
Proceedings of Machine Learning Research vol 145:1–20, 2022 3rd Annual Conference on Mathematical and Scientific Machine Learning

A Machine Learning Enhanced Algorithm for the Optimal Landing
Problem

Yaohua Zang YHCHUANG@ZJU.EDU.CN
Zhejiang University

Jihao Long JIHAOL@PRINCETON.EDU
Princeton University

Xuanxi Zhang ZHANGXUANXI@PKU.EDU.CN
Peking University

Wei Hu WH11@PRINCETON.EDU
Princeton University

Weinan E WEINAN@MATH.PRINCETON.EDU
Peking University and Princeton University

Jiequn Han JIEQUNHAN@GMAIL.COM

Flatiron Institute

Editors: Bin Dong, Qianxiao Li, Lei Wang, Zhi-Qin John Xu

Abstract
We propose a machine learning enhanced algorithm for solving the optimal landing problem. Using
Pontryagin’s minimum principle, we derive a two-point boundary value problem for the landing
problem. The proposed algorithm uses deep learning to predict the optimal landing time and a
space-marching technique to provide good initial guesses for the boundary value problem solver.
The performance of the proposed method is studied using the quadrotor example, a reasonably
high dimensional and strongly nonlinear system. Drastic improvement in reliability and efficiency
is observed.
Keywords: Optimal control, landing problem, deep neural networks, machine learning-based
warm start

1. Introduction

The optimal landing problem is concerned with optimally controlling aerial vehicles to land on the
target position. Developing effective numerical algorithms for the optimal landing problem has been
a challenging task for some time, due to the high dimensionality of the state space and nonlinearity
of the dynamics. Traditionally, there are two approaches for solving optimal control and landing
problems: the direct method and the indirect method. The direct method (Vanderbei, 1999; Ross
and Fahroo, 2002) first translates the optimal control problem to a nonlinear optimization prob-
lem by discretizing time and then solves the discretized problem using well-developed optimization
solvers. This approach has been applied to lunar landing (Liu and Duan, 2006), rocket landing (Liu,
2019), quadrotor landing (Bouktir et al., 2008; Hu and Mishra, 2017), to name a few. The indirect
method (Bock and Plitt, 1984; Bertolazzi et al., 2005; Wang, 2009) is based on the Pontryagin Min-
imum/Maximum Principle (PMP), which can be interpreted as the first-order optimality conditions
of the optimal control problem. One then solves the two-point boundary value problem (TPBVP)
derived from the PMP. The indirect method has also been applied to a variety of landing problems

© 2022 Y. Zang, J. Long, X. Zhang, W. Hu, W. E & J. Han.



A MACHINE LEARNING ENHANCED ALGORITHM FOR THE OPTIMAL LANDING PROBLEM

with different terminal constraints (Guo et al., 2011; Assellaou et al., 2016; Hu et al., 2015). Despite
the progress, these methods still have serious limitations such as the sub-optimality of the trajectory
(Foehn et al., 2021; Romero et al., 2021), reliance on good initial guesses (Geisert and Mansard,
2016), and long computation time.

In recent years, starting from Han and E (2016), deep neural networks (DNN) have been widely
used to solve high dimensional optimal control problem (see, e.g., Tang et al. (2018); Tang and
Hauser (2019); Zhu et al. (2019); Beppu et al. (2021); Nakamura-Zimmerer et al. (2021a)). Sánchez-
Sánchez and Izzo (2018) used the DNNs to approximate the mapping from states to optimal actions
and presented applications on several landing problems. Tang et al. (2018) introduced a trajectory
optimization approach that achieved real-time performance by combining machine learning to pre-
dict optimal trajectories with refinement by quadratic optimization. Zhu et al. (2019) used DNNs to
learn the optimal action to improve the computational efficiency for the fuel-optimum lunar landing
problem. Shi et al. (2019) presented a deep learning-based robust nonlinear controller to improve
the control performance of a quadrotor during landing. You et al. (2020) developed a learning-based
optimal control method for the Mars entry and power descent guidance to find optimal guidance laws
in real-time. Instead of learning the feedback control directly, Nakamura-Zimmerer et al. (2021a)
proposed to learn the value function via DNNs and predict the optimal feedback through the dy-
namic programming principle. Although they have shown great potential for the optimal control of
high dimensional and strongly nonlinear systems, current DNN-based algorithms are still not robust
enough (Chen et al., 2018; Nakamura-Zimmerer et al., 2021b). One major obstacle is the sensitive
dependence on a good initialization at the various stages of the algorithms.

This paper proposes a new numerical method that combines the traditional indirect method and
DNNs to solve the optimal landing problems with much improved reliability and efficiency. Over-
all we will use DNN-based prediction of the terminal time and space-marching technique to warm
start the solving process and accelerate convergence. We will take the quadrotor unmanned aerial
vehicles (UAVs) as an example to demonstrate the methodology. Rotary-wing UAVs have received
widespread attention in recent years due to their wide range of application scenarios, including pack-
age delivery, film photography, agricultural inspections, and search and rescue missions. Among the
many types of UAVs, the quadrotor is the most prominent aerial system. Due to its simplicity and
versatility, the quadrotor has become the most flexible and maneuverable drone Ackermann (2020);
Verbeke and Schutter (2018). We consider the full quadrotor dynamic model and aim to achieve an
optimal landing path with minimum time and control effort. We start from the indirect method, uti-
lizing the PMP to transform the original optimal landing problem into a TPBVP. One critical issue
of the TPBVP solver is to find good initial guesses (Tsiotras et al., 2011; Nakamura-Zimmerer et al.,
2021a). To overcome this difficulty, we mainly make two contributions to enhance the performance
of TPBVP solver. First, we propose to use a solution to the fixed terminal time problem as an initial
guess to the free time problem (Algorithm 2) and use neural networks to predict the optimal terminal
time to obtain the best performance. Second, we introduce a space-marching scheme (Algorithm 3)
to solve the fixed terminal time problem, which to the best of our knowledge, has not been applied in
optimal control problems before. Compared to the baseline TPBVP solver, the proposed algorithm
obtains the optimal landing trajectory with a much higher success rate and less computation time.

The paper is organized as follows. Section 2 presents the general form of control problems
that our algorithm will be applied to and the specification of the optimal landing problem for the
quadrotor. Our machine learning enhanced algorithm will be introduced in Section 3, with numeri-
cal results demonstrating its efficiency. Section 4 presents the difference between the obtained opti-

2



A MACHINE LEARNING ENHANCED ALGORITHM FOR THE OPTIMAL LANDING PROBLEM

mal solution and the suboptimal solution provided by the model predictive control (MPC) method,
another popular method for solving optimal control problems. Section 5 concludes the paper with
some discussions on future work.

2. Formulation of the optimal control problem

We consider a deterministic system defined by the following ordinary differential equation (ODE){
ẋ(t) = f(x(t),u(t)), t ∈ [0, tf ]

x(0) = x0, g(x(tf )) = 0,
(1)

where x(t) ∈ Rn indicates the states, u(t) ∈ U ⊂ Rm represents the controls with U being the
admissible set of the controls, f : Rn×U 7→ Rn and g : Rn 7→ Rk are smooth functions describing
the dynamics and terminal condition. We call {x,u, tf} a feasible path if (1) is satisfied and use P
to denote the set of all feasible paths. The total cost is defined as

C[x,u, tf ] =

∫ tf

0
L(x(t),u(t))dt, (2)

where L : Rn × U 7→ R is the running cost, which is assumed to be smooth and non-negative.
We will consider two different but closely related problems. In the first problem, tf is a given

positive constant and we aim to minimize the performance function over all feasible paths with a
fixed terminal time tf :

min
(x,u):{x,u,tf}∈P

C[x,u, tf ]. (3)

We call this problem a fixed terminal time problem. We are also interested in the free terminal time
problem, where we aim to minimize the performance function over all feasible paths:

min
{x,u,tf}∈P

C[x,u, tf ]. (4)

Our ultimate goal is to solve this free terminal time problem to find the optimal landing trajectory
and corresponding control with minimum time and control effort.

We remark that, in more complicated cases, there can be path constraints such as c(x(t),u(t)) ≥
0 in the dynamical system. Here we only consider problems free of path constraints to highlight
the main features of the techniques we introduce. These techniques can be naturally extended to
problems with path constraints and, we intend to study this in future work.

2.1. Pontryagin’s Minimum Principle

Pontryagin’s Minimum Principle (PMP) establishes a set of necessary conditions for optimality,
which converts the optimal control problem (3) or (4) to two-point boundary value problems (TP-
BVP). Algorithms based on the PMP are usually called indirect methods Bock and Plitt (1984);
Bertolazzi et al. (2005); Wang (2009). To simplify the discussion, we assume that both the fixed
terminal time problem (3) and the free terminal time problem (4) admit a unique minimizer and
the solutions of corresponding TPBVPs are unique. This assumption ensures the optimality of the
solutions of TPBVPs. In the examples considered here, we have not found multiple solutions to the
TPBVPs.

3



A MACHINE LEARNING ENHANCED ALGORITHM FOR THE OPTIMAL LANDING PROBLEM

To state the PMP, we introduce a costate variable λ ∈ Rn and define the Hamiltonian

H(x,λ,u) = L(x,u) + λ · f(x,u). (5)

The PMP reduces the fixed terminal time problem (3) to a system of equations in the form of{
ẋ(t) = ∂TλH(x(t),λ(t),u∗(t)),

λ̇(t) = −∂TxH(x(t),λ(t),u∗(t)),
(6)

together with the boundary conditions given by the original one augmented with the transversality
conditions: 

x(0) = x0,

g(x(tf )) = 0,

∇g(x(tf ))α = λ(tf ).

(7)

Here∇g(x(tf )) ∈ Rn×k, and α ∈ Rk is a multiplier. In addition, the optimal control u∗(t) should
satisfy the minimization of the Hamiltonian at each t:

u∗(t) = arg min
u∈U

H(x,λ,u). (8)

Equations (6), (7) and (8) together complete the PMP for the fixed terminal time problem (3). For
the free terminal time problem (4), besides (6), (7) and (8), we need the extra condition for the
optimal terminal time tf :

H(x(tf ),λ(tf ),u∗(tf )) = 0. (9)

See Hartl et al. (1995) for the proof of the above PMP and detailed discussions.

2.2. The optimal landing problem

2.2.1. THE FULL DYNAMIC MODEL OF QUADROTOR

To introduce the dynamics of the quadrotor, we let {OE ,XE ,YE ,ZE} denote the Earth-fixed co-
ordinate system and {Ob,Xb,Yb,Zb} the body-fixed coordinate system, whose origin Ob is at the
center of mass (CoM) of the quadrotor. Then the dynamics of the quadrotor can be modeled as
follows 

ṗ = RT (η)vb

v̇b = −wb × vb −R(η)g + 1
mfu

η̇ = K(η)wb

ẇb = −J−1wb × Jwb + J−1τu,

(10)

where p = (x, y, z)T is the inertial position of the CoM in the Earth-fixed coordinates and vb =
(vx, vy, vz)

T is the linear velocity of the quadrotor expressed in the body-fixed coordinates. η =
(φ, θ, ψ) is the attitude of the quadrotor in the Earth-fixed coordinates defined by the Euler angles:
roll(φ), pitch(θ) and yaw(ψ). wb = (p, q, r)T denotes the angular velocity in the body-fixed coor-
dinates. In total x = (pT ,vTb ,η

T ,wT
b )T ∈ R12 denotes the state variable. fu = (0, 0, T )T and

τu = (τx, τy, τz)
T are the total thrust and body torques from the four rotors, which are forces applied

by the control variables to adjust the quadrotor’s dynamics. The constants m and g = (0, 0, g)T

4



A MACHINE LEARNING ENHANCED ALGORITHM FOR THE OPTIMAL LANDING PROBLEM

Table 1: List of notations in the quadrotor model.

Notation Meaning

p = (x, y, z)T the inertial position in the Earth-fixed coordinates
vb = (vx, vy, vz)

T the linear velocity in the body-fixed coordinates
η = (φ, θ, ψ)T the Euler angles in the Earth-fixed coordinates
ωb = (p, q, r)T the angular velocity in the body-fixed coordinates
fu = (0, 0, T )T the total thrust vector in the body-fixed coordinates
τu = (τx, τy, τz)

T the body torques from the four rotors in the body-fixed coordinates
m the mass of quadrotor

g = (0, 0, g)T the gravity vector in the Earth-fixed coordinates, where g = 9.81m/s2

RT (η) ∈ R3 the transformation from the Earth-fixed to the body-fixed coordinates
K(η) ∈ R3 the attitude kinematic matrix
J ∈ R3 the constant inertia matrix

S(ωb) ∈ R3 the skew-symmetric matrix.
F = (F1, F2, F3, F4) the individual rotor thrusts vector

denote the mass and the gravity vector (g = 9.81m/s2 denotes the acceleration of gravity on Earth),
respectively. The direction cosine matrixR(η) ∈ SO(3) (representing the transformation from the
Earth-fixed coordinates to the body-fixed coordinates), attitude kinematic matrixK(η) (relating the
time derivative of the attitude representation with the associated angular rate) and constant inertia
matrix J are defined as follows

R(η) =

 cos θ cosψ cos θ sinψ − sin θ
sin θ cosψ sinφ− sinψ cosφ sin θ sinψ sinφ+ cosψ cosφ cos θ sinφ
sin θ cosψ cosφ+ sinψ sinφ sin θ sinψ cosφ− cosψ sinφ cos θ cosφ

 ,

K(η) =

1 sinφ tan θ cosφ tan θ
0 cosφ − sinφ
0 sinφ sec θ cosφ sec θ

 , J = diag(Jx, Jy, Jz),

where Jx, Jy, and Jz are the moments of inertia of the quadrotor in the x-axis, y-axis, and z-axis,
respectively.

To ease the notation, we denote the controls as u = (T, τx, τy, τz)
T . Then we have fu = Au

and τu = Bu with A and B defined as

A =

0 0 0 0
0 0 0 0
1 0 0 0

 , B =

0 1 0 0
0 0 1 0
0 0 0 1

 .

5



A MACHINE LEARNING ENHANCED ALGORITHM FOR THE OPTIMAL LANDING PROBLEM

Note that in practice the quadrotor is directly controlled by the the individual rotor thrusts F =
(F1, F2, F3, F4)

T , and we have the relation u = EF with

E =


1 1 1 1
0 l 0 −l
−l 0 l 0
c −c c −c

 ,
where l is the distance from the rotor to the UAV’s center of gravity and c is a constant that relates
the rotor angular momentum to the rotor thrust (normal force). So once we obtain the optimal
control u∗, we are able to get the optimal F ∗ immediately by the relation F ∗ = E−1u∗. We also
introduce the skew-symmetric matrix S(wb)

S(wb) =

 0 r −q
−r 0 p
q −p 0

 ,
which has the property

−wb × vb = S(wb)vb and − J−1wb × Jwb = J−1S(wb)Jwb.

Then equation (10) can be finally rewritten as
ṗ = RT (η)vb

v̇b = S(wb)vb −R(η)g + 1
mAu

η̇ = K(η)wb

ẇb = J−1S(wb)Jwb + J−1Bu.

(11)

Table 1 summarizes all the notations used in full dynamic model of the quadrotor.

2.2.2. THE OPTIMAL CONTROL PROBLEM

We aim to solve the landing problem with the minimum control effort and shortest landing time
under the dynamics described in (11). That is, to find the optimal controls to steer the quadrotor
from some initial states x0 ∈ S0 to a target state xtf ∈ ST := {x : g(x) = 0}.

For the landing problem, the terminal set is defined as

ST = {x = (pT ,vTb ,η
T ,wT

b )T | p = vb = wb = 0, φ = θ = 0}.

The running cost L in (2) is given by

L(x,u) = 1 + (u− ud)TQu(u− ud),

where ud = (mg, 0, 0, 0) represents the reference control that balances with gravity and Qu =
diag(1, 1, 1, 1) represents the weight matrix characterizing the cost of deviating from the reference
control. As the total cost C[x,u, tf ] is the integration of the function L over [0, tf ], the integration
of the first term of L is exactly the landing time tf that we hope to minimize and the integration of

6



A MACHINE LEARNING ENHANCED ALGORITHM FOR THE OPTIMAL LANDING PROBLEM

the second term of L is the accumulation of deviations between the applied control and the reference
control that enables the quadrotor to hover in the air. Therefore, the definition of function L is to
minimize the landing time tf , supplemented by a regularization term to make the control close to
the reference one. Given the running cost, the optimal control problem with fixed terminal time can
be written as

minx,u C[x,u, tf ]

subject to



ṗ = RT (η)vb

v̇b = S(wb)vb −R(η)g + 1
mAu

η̇ = K(η)wb

ẇb = J−1S(wb)Jwb + J−1Bu

x(0) = x0

p(tf ) = v(tf ) = w(tf ) = 0, φ(tf ) = θ(tf ) = 0.

(12)

The optimal control problem with free terminal time needs to further find the optimal terminal time
tf to minimize the total cost in (12).

To derive the TPBVP for the problem (12), we denote λ = (λTp ,λ
T
v ,λ

T
η ,λ

T
w)T ∈ R12 as the

costate of x and write down the Hamiltonian

H(x,λ,u) = L(x,u) + λp · (RT (η)vb) + λv · (S(wb)vb −R(η)g +
1

m
Au)

+ λη · (K(η)wb) + λw · (J−1S(wb)Jwb + J−1Bu).

Therefore, the TPBVP for the optimal control problem (12) is

ṗ = RT (η)vb

v̇b = S(wb)vb −R(η)g + 1
mAu

∗

η̇ = K(η)wb

ẇb = J−1S(wb)Jwb + J−1Bu∗

λ̇p = 0

λ̇v = −R(η)λp − ST (wb)λv

λ̇η = −∂(λp·RT (η)vb)
∂η + ∂(λv ·R(η)g)

∂η − ∂(λη ·K(η)wb)
∂η

λ̇w = −KT (η)λη − ∂(λv ·S(wb)vb)
∂wb

− ∂(λw·J−1S(wb)Jwb)
∂wb

,

(13)

with boundary conditions 
x(0) = x0,

p(tf ) = v(tf ) = w(tf ) = 0,

φ(tf ) = θ(tf ) = λψ(tf ) = 0.

(14)

For the optimal control problem with free terminal time, the optimal final time tf is further deter-
mined by

H(x(tf ),λ(tf ),u∗(tf )) = 0. (15)

7



A MACHINE LEARNING ENHANCED ALGORITHM FOR THE OPTIMAL LANDING PROBLEM

In both cases, the optimal feedback control u∗ at state x and time t is

u∗ = arg min
u

H(x,λ,u) = ud − (QTu +Qu)−1(
1

m
ATλv +BT (JT )−1λw).

In the free terminal time problem, the undetermined tf brings difficulty to the time integrator in
the TPBVP solver since the time interval keeps changing during the solving process. To circumvent
this difficulty, we consider tf as a new state xn+1 = tf and introduce a new variable τ = t/tf =
t/xn+1. We then have

ẋn+1 = 0 (16)

and 
ṗ = xn+1(R

T (η)vb)

v̇b = xn+1(S(wb)vb −R(η)g + 1
mAu

∗)

η̇ = xn+1(K(η)wb)

ẇb = xn+1(J
−1S(wb)Jwb + J−1Bu∗).

(17)

The cost function becomes

C = xn+1

∫ 1

0
L(x(τ),u(τ))dτ,

and the Hamiltonian becomes

H(x, xn+1,λ,u) = xn+1

(
L(x,u) + λp · (RT (η)vb) + λv · (S(wb)vb −R(η)g +

1

m
Au)

+ λη · (K(η)wb) + λw · (J−1S(wb)Jwb + J−1Bu)

)
.

Similarly, the costate λ satisfies the following equation
λ̇p = 0

λ̇v = −xn+1(R(η)λp + ST (wb)λv)

λ̇η = −xn+1(Q
T
η +Qη)(η − ηd)− xn+1(

∂(λp·RT (η)vb)
∂η − ∂(λv ·R(η)g)

∂η +
∂(λη ·K(η)wb)

∂η )

λ̇w = −xn+1(
∂(λv ·S(wb)vb)

∂wb
+KT (η)λη + ∂(λw·J−1S(wb)Jwb)

∂wb
).

(18)
The transversality condition (15) then becomes

H(x(1),λ(1),u∗(1)) = 0. (19)

Therefore, we transform the TPBVP (13)-(15) with undetermined time-horizon to a TPBVP with a
fixed time-horizon [0, 1], which is easier to solve for a TPBVP solver.

3. Machine learning enhanced algorithm

In this section, we present our algorithm for solving the optimal landing problem and show numer-
ical results for the quadrotor model. We use the same system parameters as in Madani and Benal-
legue (2006). We take the mass m = 2kg, the gravity g = 9.81m/s2, the moment of of inertia
Jx = Jy = Jz/2 = 1.2416kg ·m2. In the following experiments, we specify the domain of initial

8



A MACHINE LEARNING ENHANCED ALGORITHM FOR THE OPTIMAL LANDING PROBLEM

state as S0 = {x, y ∈ [−10, 10], z ∈ [5, 100], vx, vy, vz ∈ [−0.5, 0.5], θ, φ ∈ [−π/4, π/4], ψ ∈
[−π, π];w = 0}. We always uniformly sample 100 samples of x0 from S0 to estimate the success
rate and average computation time of the algorithm. In Figure 1, we present an example solution
of the optimal landing problem that manipulates the quadrotor from the starting position x0 to the
origin. Figure 1(a) shows the optimal trajectory in the Earth-fixed coordinates obtained by the pro-
posed method. Figure 1(b) and Figure 1(c) show the optimal position p and attitude η, respectively.

In Section 3.1 below, we first demonstrate that the baseline TPBVP solver for the free terminal
time TPBVP (17)-(19) hardly works. Then in Section 3.2, we show that the solution to the fixed
terminal time TPBVP (13)-(14) can provide better initialization for the free terminal time problem.
Finally, in Sections 3.3 and 3.4, we propose the space-marching technique and DNN-based predic-
tion of the optimal terminal time to further improve the success rate and efficiency of the solver to
the fixed time problem.

(a)

0.0 0.2 0.4 0.6 0.8 1.0
t

10

5

0

5

10

15

20 x
y
z

(b)

0.0 0.2 0.4 0.6 0.8 1.0
t

0.25

0.00

0.25

0.50

0.75

1.00

1.25

(c)

Figure 1: (a) An example of the optimal trajectory for the landing problem of quadrotor; (b) The
optimal position p vs. time; (c) The optimal attitude η vs. time.

9



A MACHINE LEARNING ENHANCED ALGORITHM FOR THE OPTIMAL LANDING PROBLEM

3.1. Baseline method for the TPBVP

Throughout the paper, we will use the classical bvp4c method (Kierzenka and Shampine, 2001) as
the TPBVP solver. It is a collocation method based on piecewise cubic polynomials. The solution at
all collocation points and unknown parameters are solved from a system of algebraic equations by
the quasi-Newton method. Then the residual defined in terms of the interpolant is used to estimate
the error and refine the mesh. By the nature of the quasi-Newton method, the quality of the initial
guess of the solution is critical for the performance.

In our TPBVP, without any prior knowledge, the simplest choice of the initial guess is to set tf
to a reasonable scalar and x(t),λ(t) to the constant zero, as summarized in Algorithm 1. However,
the TPBVP solver hardly converges with this choice. Table 2 reports the success rate of Algorithm 1
with a few different initial guesses of tf We can see that, with zero initialization of the path, the
success rate of solving the free terminal time TPBVP is always very low, regardless of the initial
guess of tf .

Algorithm 1 Free terminal time problem with zero initialization
1: Input: The initial state x0; the guess value of the optimal terminal time t̃∗f .
2: Solve the TPBVP corresponding to the free time problem with the zero as the initial guess of

the path and t̃∗f as the initial guess of the terminal time.
3: Output: The solution of the free time problem.

Table 2: Solving TPBVP corresponding to the free terminal time problems with zero initialization

initial guess of tf 4 8 12 16 20 24

success rate 3% 4% 0% 0% 1% 1%

3.2. Using solution to the fixed terminal time problem as initial guess

Table 2 suggests that such simple initial guess of x(t) and λ(t) leads to the TPBVP solver’s poor
performance when solving the free terminal time problem. To address this issue, we notice that
the solution of the free terminal time problem is also the solution of a corresponding fixed terminal
time problem if the fixed terminal time tf equals the optimal terminal time t∗f . In other words, if we
have a reasonable guess of t∗f , the solution of the fixed terminal time problem can provide us a good
initial guess to the free terminal time problem. Moreover, the fixed terminal time problem is easier
to solve with many efficient techniques, such as the marching method introduced in the following
subsection. Therefore, we can first guess a value of the optimal terminal time t̃∗f and solve the
fixed terminal time problem with tf = t̃∗f . Then we use its solution as the initial guess to solve the
free terminal time problem. This approach can be viewed as a warm start method for solving the
optimization problem. The corresponding algorithm is summarized in Algorithm 2 (warm start with
fixed terminal time solution), in which the fixed time problem is solved using zero initialization.

The numerical results of Algorithm 2 with different choices of the initial guess tf = t̃∗f are
presented in Figure 2. Comparing Figure 2 with Table 2, we can see that a warm start with the
solution to the fixed terminal time problem significantly improves the success rate, although the rate
is still not high enough for practical applications.

10



A MACHINE LEARNING ENHANCED ALGORITHM FOR THE OPTIMAL LANDING PROBLEM

Algorithm 2 Warm start with fixed terminal time solution
1: Input: The initial state x0; the guess value of the optimal terminal time t̃∗f .
2: Solve the fixed time problem with tf = t̃∗f using zero initialization.
3: Solve the free time problem by using the solution from step 2 as initial guess.
4: Output: The solution of the free terminal time problem.

Figure 2: Warm start with fixed terminal time solution: the label “free” denotes the success rate
for solving the free terminal time problems; the label “fix/free” (with a lighter color)
denotes the rate that the fixed terminal time problems are solved successfully but the
corresponding free terminal time problem is not solved successfully. The sum of the two
parts is the success rate for solving the fixed terminal time problem.

3.3. Space-marching method for solving the fixed terminal time problem

To further increase the success rate of solving the fixed terminal time TPBVP, we propose a ho-
motopy method in the spirit of space-marching (Ascher et al., 1995). Space-marching is primarily
developed to solve differential equations. Here we tailor a similar idea to help solve our optimal
landing problems. Its intuition is as follows. Solving the fixed time problem is still difficult since
the initial state x0 is far away from the terminal set ST . We can solve a simpler fixed time problem
whose initial state is closer to the terminal state and the corresponding solution is not far from that
of the original fixed time problem. After the simpler fixed time problem is solved, we can use its
solution as the initial guess to solve the original harder one. In other words, we seek another level
of a warm start to help solve the fixed terminal time problem, and this process can be performed
repeatedly.

To present this method in a systematic way, we say xend is a terminal state if there exists u ∈ U
such that for any tf ≥ 0, the path

x(t) ≡ xend, u(t) ≡ u, 0 ≤ t ≤ tf

is the optimal path for the fixed terminal time problem with tf as terminal time and x0 = xend. We
always assume such a terminal state exists for the optimal landing problem. In this paper, we choose
the origin (of the 12-dimensional state space) as the terminal state. In order to solve the problem

11



A MACHINE LEARNING ENHANCED ALGORITHM FOR THE OPTIMAL LANDING PROBLEM

with a given initial state x0, we evenly select K points in the line segment from xend to x0, and
denote them as {x1

0,x
2
0, · · · ,xK0 } according to their increasing distances to xend (xK0 = x0). We

use xkaug to denote the solution (x(t),λ(t)), (0 ≤ t ≤ t̃∗f ) to the fixed time problem with the initial
state xk0 and terminal time t̃∗f , k = 1, . . . ,K. We assume x0

aug constant zero. The space-marching
starts with k = 1. In the k-th step of marching, we solve the fixed time problem with the initial
state xk0 by using the solution xk−1aug obtained from the previous step as the initial guess. The process
repeats until k = K. We call this algorithm warm start with fixed terminal time solution through
space-marching, and it is summarized in Algorithm 3.

Algorithm 3 Warm start with fixed terminal time solution through space-marching
1: Input: The initial state x0; the guess value of the optimal terminal time t̃∗f ; the the number of

marching steps K.
2: Evenly select K points in the line segment from xend to x0, and denotes them as
{x1

0,x
2
0, · · · ,xK0 }.

3: Initialize x0
aug with constant zero.

4: for k = 1, 2, · · · ,K do
5: Solve the fixed terminal time problem with initial state xk0 and terminal time t̃∗f by using

xk−1aug as the initial guess. Denote the solution as xkaug.
6: end for

Solving the free time problem with xKaug as the initial guess of the path and t̃∗f as the initial
guess of the terminal time.

7: Output: The solution of the free terminal time problem with initial state x0.·

Figure 3: Warm start with fixed terminal time solution through space-marching: the histograms
denote the success rates (left y-axis), whose labels share the same meaning as those in
Figure 2; the dash-dotted lines denote the average computation time (in seconds) per path
(right y-axis).

12



A MACHINE LEARNING ENHANCED ALGORITHM FOR THE OPTIMAL LANDING PROBLEM

Figure 3 shows the success rate and computation time of Algorithm 3 with different choices of
the initial guess tf = t̃∗f and marching steps K. We can see that most of the fixed terminal time
problems can be solved with a high success rate if the guessed terminal time t̃∗f is not too small and
the number of marching steps K is large enough (greater than 20). However, the free terminal time
problem might not be solved successfully if the guessed terminal time is not close enough to the
optimal terminal time. To see this more clearly, we use Algorithm 3 withK = 60, t̃∗f = 24 to collect
optimal time t∗f associated with 300 randomly sampled initial states x0. We plot the distribution of
t∗f in Figure 4, from which we can see that the values of t∗f are distributed over a wide range. Hence,
using a constant initial guess t̃∗f cannot achieve the best performance. To improve the success rate
of the free terminal time problem, we need a more accurate prediction of the optimal terminal time.
We will investigate this issue in the next subsection.

Figure 4: The distribution of optimal terminal time t∗f obtained by solving 300 optimal landing
problems with randomly selected initial states.

3.4. Predicting the optimal terminal time

In this section, we consider empowering Algorithm 3 by predicting the optimal terminal time as a
function of the initial state x0 through a linear model or a neural network. To do so, we need to
prepare a dataset for supervised learning. As described in the previous section, we first randomly
select 300 initial states x0 and then use Algorithm 3 with K = 60, t̃∗f = 24 to collect 300 optimal
landing paths (the specified terminal time 24 is not necessarily the optimal terminal time). We select
100 states (uniformly in time) on each optimal landing path and store the corresponding optimal
landing time to obtain the training data. We have 30000 pairs of starting positions and optimal
ending times for training in total. We then use this dataset to optimize a linear model and a neural
network model (3 three hidden layers and 64 neurons in each layer) based on the objective being
the squared difference between the predicted t̃∗f and the truth optimal terminal time. The Adam
optimizer (Kingma and Ba, 2015) is used to train the neural network model with 500 epochs, batch
size 128, and learning rate 0.002. Afterwards, when we need to solve a free terminal time problem

13



A MACHINE LEARNING ENHANCED ALGORITHM FOR THE OPTIMAL LANDING PROBLEM

with a new initial state x0, we first use the linear model or the neural network to predict the optimal
terminal time t̃∗f associated with x0 and then use Algorithm 3 to solve the problem.

The success rates of using a constant (t̃∗f = 24), linear model, or a neural network to predict the
optimal terminal time with the different space-marching stepsK are presented in Figure 5. Compar-
ing these results, together with those using other guessed constant optimal terminal time in Figure
3, we can see that both the linear model and neural network model achieve much higher success
rates. Using a neural network attains higher success rates and takes less computation time because
it can predict the optimal terminal time more accurately. With the help of neural networks and the
space-marching with K = 60, we achieve a 99% successful rate, and the average computation time
is about 17 seconds, which is the best performance among the methods considered in this paper. 1

Figure 5: Comparison between the constant, linear model, and neural network model when they are
used to predict t∗f as the initial guess in the TPBVP solver. The histograms denote the
success rates (left y-axis) of solving the free terminal time problem. Dash-dotted lines
denote the average computation time (in seconds) per path (right y-axis).

The comparison among different methods proposed in this section with best hyper-parameters
is listed in Table 3. Notice that Algorithm 1 refers to directly solving the free terminal problem
with zero initialization, Algorithm 2 refers to a warm start with the fixed terminal time solution, and
Algorithm 3 refers to a warm start with the fixed terminal time solution through space-marching.

4. Suboptimality of Model Predictive Control

In this section, we study the performance of the model predictive control (MPC) method (Camacho
and Alba, 2013), a widely used algorithm in optimal control, on the optimal landing problem. At
each discretized time step, the algorithm computes a cost-minimizing control strategy starting from
the current state for a relatively short time horizon (called the prediction horizon). The obtained
control strategy is implemented for a very small time duration, then the states are updated and

1. We have also tested the performance of using 50 instead of 300 trajectories to optimize the neural networks. The
success rate achieved with K = 60 is 95%.

14



A MACHINE LEARNING ENHANCED ALGORITHM FOR THE OPTIMAL LANDING PROBLEM

Table 3: Summary of success rate and computation time of different methods

Algorithm 1
(tf = 8)

Algorithm 2
(tf = 16)

Algorithm 3
(tf = 16,
K = 60)

Algorithm 3
(tf : linear,
K = 60)

Algorithm 3
(tf : NN,
K = 60)

success rate 4% 26% 89% 96% 99%
computation time (s) 8.24 9.78 19.46 19.43 17.10

the calculations are repeated. There have been various studies using the MPC method to control
quadrotors (Bangura and Mahony, 2014; Ru and Subbarao, 2017; Eren et al., 2017; Romero et al.,
2021). For application to the landing problem (Eren et al., 2017), a landing trajectory is required
as the input. MPC can then use that to define the running cost in the prediction horizon in order to
track that trajectory to land on the target position.

We pick an initial state and compute its optimal trajectory with our machine learning enhanced
algorithm. The overall trajectory and trajectories of position and attitude are shown in Figure 6(a)
and 6(b) with red color. The corresponding optimal terminal time t∗f is 14.58(s), and the optimal
cost obtained by the proposed method is 18.63. We then use the Matlab Model Predictive Control
Toolbox (Bemporad et al., 2004) to track the optimal trajectory with the MPC method. We set the
prediction horizon as 1.8(s) with a time difference ∆t = 0.1(s) to strike a reasonable balance be-
tween computation accuracy and efficiency. We also modify the cost parameter in the prediction
horizon to achieve the best tracking performance. The blue curves in Figure 6(b) show the tra-
jectories of the position and attitude obtained by the MPC method. The corresponding total cost
according to (2) is 32.31. From this result, we can clearly see that the MPC method can only find
controls with suboptimality even provided the optimal trajectory. It is determined by the nature of
the short horizon approximation scheme in the MPC method.

5. Conclusion and discussion

This paper proposes a machine learning enhanced algorithm for solving the optimal landing prob-
lem. The proposed algorithm is based on providing a good initialization for the corresponding
TPBVP derived from PMP. It has two main components: predicting the terminal time using DNN
and solving the resulting fixed time problem using a space-marching method. Through a series of
experiments, the effectiveness of the proposed method has been verified. The techniques introduced
in this paper are mainly designed for the indirect methods based on the TPBVP solver. It is of
interest to study in the future work how machine learning techniques can enhance direct methods
in some similar spirit. Another interesting direction for future work is to include the parameters in
the dynamical systems as the input of the DNN such that the resulting DNN can deal with various
dynamical systems.

So far we have mainly used neural networks to predict the optimal terminal time. An obvious al-
ternative is to directly learn the mapping from the state to control or value function using DNN. Our
effort along this line has not been successful so far. Here we present such examples. We consider the
same problem in Section 3. Similarly as above, we randomly sample 1000, 1500, and 2000 samples
of x0 from S0 and use them to generate 1000, 1500, and 2000 optimal trajectories, respectively.
We then collect 20 (uniformly in time) states on each path and the corresponding value, resulting in

15



A MACHINE LEARNING ENHANCED ALGORITHM FOR THE OPTIMAL LANDING PROBLEM

(a)

(b)

Figure 6: (a): The trajectory obtained by the MPC method (cost=32.31) following the optimal tra-
jectory obtained by the proposed method (cost=18.63); (b): The optimal position (x, y, z)
and attitude (φ, θ, ψ) (red) vs. those obtained by the MPC method (blue).

three training sets with 20000, 30000, and 40000 pairs of data, respectively. Finally, we use these
training sets to train three different neural networks, denoted by NN1000, NN1500, and NN2000,
respectively. According to the PMP, the gradients of the approximate value function should provide
the optimal feedback control (Nakamura-Zimmerer et al., 2021a). Figures 7(a), 7(b) and 7(c) show
trajectories on the time interval [0, t∗f ], starting from the same initial state and following such control
strategies provided by three neural networks. Compared to the optimal trajectory obtained by our
algorithm, the neural network-based feedback control performs reasonably in the early stages of the
landing but gradually deteriorates. Even when we use these trajectories as the initial guess for the

16



A MACHINE LEARNING ENHANCED ALGORITHM FOR THE OPTIMAL LANDING PROBLEM

TPBVP solver, the solution still does not converge. This phenomenon is perhaps due to the high
dimensionality and strong nonlinearity of the problem, as well as the wide range of scales spanned
by the training data. It is an important future direction to explore techniques that can leverage neu-
ral networks to directly provide feedback control robustly for challenging problems like the optimal
landing problem considered in this paper.

(a) NN1000 (b) NN1500 (c) NN2000

Figure 7: Trajectories on the time interval [0, t∗f ], starting from the same initial state and following
controls provided by neural networks NN1000, NN1500, and NN2000, respectively. The
neural network-based feedback control performs reasonably well at the beginning and
then deteriorates.

References

Evan Ackermann. AI-powered drone learns extreme acrobatics. IEEE Spectrum, 2020.

Uri M Ascher, Robert MM Mattheij, and Robert D Russell. Numerical solution of boundary value
problems for ordinary differential equations. SIAM, 1995.

Mohamed Assellaou, Olivier Bokanowski, Anya Desilles, and Hasnaa Zidani. A Hamilton-Jacobi-
Bellman approach for the optimal control of an abort landing problem. In 2016 IEEE 55th Con-
ference on Decision and Control (CDC), pages 3630–3635. IEEE, 2016.

Moses Bangura and Robert Mahony. Real-time model predictive control for quadrotors. IFAC
Proceedings Volumes, 47(3):11773–11780, 2014.

Alberto Bemporad, Manfred Morari, and N Lawrence Ricker. Model predictive control toolbox.
User’s Guide, Version, 2, 2004.

Hirofumi Beppu, Ichiro Maruta, and Kenji Fujimoto. Value iteration with deep neural networks for
optimal control of input-affine nonlinear systems. SICE Journal of Control, Measurement, and
System Integration, 14(1):140–149, 2021.

Enrico Bertolazzi, Francesco Biral, and Mauro Da Lio. Symbolic–numeric indirect method for
solving optimal control problems for large multibody systems. Multibody System Dynamics, 13
(2):233–252, 2005.

17



A MACHINE LEARNING ENHANCED ALGORITHM FOR THE OPTIMAL LANDING PROBLEM

Hans Georg Bock and Karl-Josef Plitt. A multiple shooting algorithm for direct solution of optimal
control problems. IFAC Proceedings Volumes, 17(2):1603–1608, 1984.

Yasser Bouktir, Moussa Haddad, and Taha Chettibi. Trajectory planning for a quadrotor helicopter.
In 2008 16th mediterranean conference on control and automation, pages 1258–1263. Ieee, 2008.

Eduardo F Camacho and Carlos Bordons Alba. Model predictive control. Springer science &
business media, 2013.

Yize Chen, Yuanyuan Shi, and Baosen Zhang. Optimal control via neural networks: A convex
approach. arXiv preprint arXiv:1805.11835, 2018.

Utku Eren, Anna Prach, Başaran Bahadır Koçer, Saša V Raković, Erdal Kayacan, and Behçet
Açıkmeşe. Model predictive control in aerospace systems: Current state and opportunities. Jour-
nal of Guidance, Control, and Dynamics, 40(7):1541–1566, 2017.

Philipp Foehn, Angel Romero, and Davide Scaramuzza. Time-optimal planning for quadrotor way-
point flight. Science Robotics, 6(56):eabh1221, 2021.

Mathieu Geisert and Nicolas Mansard. Trajectory generation for quadrotor based systems using
numerical optimal control. In 2016 IEEE international conference on robotics and automation
(ICRA), pages 2958–2964. IEEE, 2016.

Yanning Guo, Matt Hawkins, and Bong Wie. Optimal feedback guidance algorithms for planetary
landing and asteroid intercept. In AAS/AIAA astrodynamics specialist conference, pages 2011–
588. AAS, 2011.

Jiequn Han and Weinan E. Deep learning approximation for stochastic control problems. arXiv
preprint arXiv:1611.07422, 2016.

Richard F Hartl, Suresh P Sethi, and Raymond G Vickson. A survey of the maximum principles for
optimal control problems with state constraints. SIAM review, 37(2):181–218, 1995.

Botao Hu and Sandipan Mishra. A time-optimal trajectory generation algorithm for quadrotor land-
ing onto a moving platform. In 2017 American Control Conference (ACC), pages 4183–4188.
IEEE, 2017.

Botao Hu, Lu Lu, and Sandipan Mishra. Fast, safe and precise landing of a quadrotor on an oscil-
lating platform. In 2015 American Control Conference (ACC), pages 3836–3841. IEEE, 2015.

Jacek Kierzenka and Lawrence F Shampine. A BVP solver based on residual control and the Maltab
PSE. ACM Transactions on Mathematical Software (TOMS), 27(3):299–316, 2001.

Diederik P Kingma and Jimmy Ba. Adam: a method for stochastic optimization. In Proceedings of
the International Conference on Learning Representations, 2015.

Xinfu Liu. Fuel-optimal rocket landing with aerodynamic controls. Journal of Guidance, Control,
and Dynamics, 42(1):65–77, 2019.

18



A MACHINE LEARNING ENHANCED ALGORITHM FOR THE OPTIMAL LANDING PROBLEM

Xinglong Liu and Guangren Duan. Nonlinear optimal control for the soft landing of lunar lander. In
2006 1st International Symposium on Systems and Control in Aerospace and Astronautics, pages
6 pp.–1387. IEEE, 2006.

Tarek Madani and Abdelaziz Benallegue. Backstepping control for a quadrotor helicopter. In 2006
IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 3255–3260. IEEE,
2006.

Tenavi Nakamura-Zimmerer, Qi Gong, and Wei Kang. Adaptive deep learning for high-dimensional
Hamilton–Jacobi–Bellman equations. SIAM Journal on Scientific Computing, 43(2):A1221–
A1247, 2021a.

Tenavi Nakamura-Zimmerer, Qi Gong, and Wei Kang. Neural network optimal feedback control
with enhanced closed loop stability. arXiv preprint arXiv:2109.07466, 2021b.

Angel Romero, Sihao Sun, Philipp Foehn, and Davide Scaramuzza. Model predictive contouring
control for near-time-optimal quadrotor flight. arXiv preprint arXiv:2108.13205, 2021.

I Michael Ross and Fariba Fahroo. A direct method for solving nonsmooth optimal control prob-
lems. IFAC Proceedings Volumes, 35(1):479–484, 2002.

Pengkai Ru and Kamesh Subbarao. Nonlinear model predictive control for unmanned aerial vehi-
cles. Aerospace, 4(2):31, 2017.

Carlos Sánchez-Sánchez and Dario Izzo. Real-time optimal control via deep neural networks: study
on landing problems. Journal of Guidance, Control, and Dynamics, 41(5):1122–1135, 2018.

Guanya Shi, Xichen Shi, Michael O’Connell, Rose Yu, Kamyar Azizzadenesheli, Animashree
Anandkumar, Yisong Yue, and Soon-Jo Chung. Neural lander: Stable drone landing control
using learned dynamics. In 2019 International Conference on Robotics and Automation (ICRA),
pages 9784–9790. IEEE, 2019.

Gao Tang and Kris Hauser. A data-driven indirect method for nonlinear optimal control. Astrody-
namics, 3(4):345–359, 2019.

Gao Tang, Weidong Sun, and Kris Hauser. Learning trajectories for real-time optimal control
of quadrotors. In 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pages 3620–3625. IEEE, 2018.

Panagiotis Tsiotras, Efstathios Bakolas, and Yiming Zhao. Initial guess generation for aircraft
landing trajectory optimization. In AIAA Guidance, Navigation, and Control Conference, page
6689, 2011.

Robert J Vanderbei. LOQO: An interior point code for quadratic programming. Optimization
methods and software, 11(1-4):451–484, 1999.

Jon Verbeke and Joris De Schutter. Experimental maneuverability and agility quantification for
rotary unmanned aerial vehicle. International Journal of Micro Air Vehicles, 10(1):3–11, 2018.

Xuezhong Wang. Solving optimal control problems with MATLAB: Indirect methods. Technical
report, 2009.

19



A MACHINE LEARNING ENHANCED ALGORITHM FOR THE OPTIMAL LANDING PROBLEM

Sixiong You, Changhuang Wan, Ran Dai, Ping Lu, and Jeremy R Rea. Learning-based optimal
control for planetary entry, powered descent and landing guidance. In AIAA Scitech 2020 Forum,
page 0849, 2020.

Lingchao Zhu, Jian Ma, and Shuquan Wang. Deep neural networks based real-time optimal control
for lunar landing. In IOP Conference Series: Materials Science and Engineering, volume 608,
page 012045. IOP Publishing, 2019.

20


	Introduction
	Formulation of the optimal control problem
	Pontryagin's Minimum Principle
	The optimal landing problem
	The full dynamic model of quadrotor
	The optimal control problem


	Machine learning enhanced algorithm
	Baseline method for the TPBVP
	Using solution to the fixed terminal time problem as initial guess
	Space-marching method for solving the fixed terminal time problem
	Predicting the optimal terminal time

	Suboptimality of Model Predictive Control
	Conclusion and discussion

