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Abstract
Transformers have achieved remarkable success in sequence modeling and beyond but suffer from
quadratic computational and memory complexities with respect to the length of the input sequence.
Leveraging techniques include sparse and linear attention and hashing tricks; efficient transformers
have been proposed to reduce the quadratic complexity of transformers but significantly degrade the
accuracy. In response, we first interpret the linear attention and residual connections in computing
the attention map as gradient descent steps. We then introduce momentum into these components
and propose the momentum transformer, which utilizes momentum to improve the accuracy of lin-
ear transformers while maintaining linear memory and computational complexities. Furthermore,
we develop an adaptive strategy to compute the momentum value for our model based on the opti-
mal momentum for quadratic optimization. This adaptive momentum eliminates the need to search
for the optimal momentum value and further enhances the performance of the momentum trans-
former. A range of experiments on both autoregressive and non-autoregressive tasks, including im-
age generation and machine translation, demonstrate that the momentum transformer outperforms
popular linear transformers in training efficiency and accuracy.
Keywords: transformer, adaptive momentum, efficient attention

1. Introduction

The self-attention mechanism is the backbone of building transformers (Vaswani et al., 2017; Kim
et al., 2017). Given an input sequence X = [x1, . . . ,xN ]

> ∈ RN×Dx of N feature vectors, the
self-attention transforms it into another sequence V̂ = [v̂1, . . . , v̂N ]

> ∈ RN×Dv as follows

v̂i =
N∑
j=1

softmax
(q>i kj√

D

)
vj , for i = 1, . . . , N, (1)
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MOMENTUM TRANSFORMER

where the scalar softmax((q>i kj)/
√
D) can be understood as the attention v̂i pays to the input

feature xj . The vectors qi,kj , and vj are the query, key, and value vectors, respectively, and are
computed as follows

[q1, q2, . . . , qN ]
> := Q = XW>

Q ∈ RN×D,
[k1,k2, . . . ,kN ]

> := K = XW>
K ∈ RN×D,

[v1,v2, . . . ,vN ]
> := V = XW>

V ∈ RN×Dv ,

(2)

where WQ,WK ∈ RD×Dx , and WV ∈ RDv×Dx are the weight matrices. (1) can be written as

V̂ = softmax
(QK>√

D

)
V , (3)

where the softmax function is applied to each row of the matrix (QK>)/
√
D. (3) is also called the

“softmax attention”. Each transformer layer T`(·) is defined via the following residual connection,

T`(X) = f`(V̂ +X), (4)

where f`(·) is a function that transforms each feature vector independently and usually chosen to
be a feedforward network. In this paper, we call a transformer built with softmax attention standard
transformer or transformer. It is easy to see that both memory and computational complexity of (3)
areO(N2) with N being the length of the input sequence. We can further introduce causal masking
into (3) for autoregressive applications (Vaswani et al., 2017).

Transformers have become the state-of-the-art model for solving many challenging problems in
natural language processing (Vaswani et al., 2017; Al-Rfou et al., 2019; Dai et al., 2019; Williams
et al., 2018; Devlin et al., 2018; Brown and et al., 2020; Howard and Ruder, 2018; Rajpurkar et al.,
2016) and computer vision (Dehghani et al., 2018; So et al., 2019; Dosovitskiy et al., 2020; Touvron
et al., 2020). Nevertheless, the quadratic memory and computational cost of computing the softmax
attention (3) is a major bottleneck for applying transformers to large-scale applications that involve
very long sequences, such as those in (Liu et al., 2018; Huang et al., 2018; Parmar et al., 2018).
Thus, much recent research on transformers has been focusing on developing efficient transformers,
aiming to reduce the memory and computational complexities of the model (Qiu et al., 2019; Child
et al., 2019; Ho et al., 2019; Parmar et al., 2018; Beltagy et al., 2020; Ainslie et al., 2020; Wang
et al., 2020; Tay et al., 2020a,b; Kitaev et al., 2020; Roy et al., 2021; Vyas et al., 2020; Zaheer et al.,
2021; Wang et al., 2020; Katharopoulos et al., 2020; Choromanski and et al., 2021; Shen et al.,
2021; Schlag et al., 2021; Blanc and Rendle, 2018; Rawat et al., 2019; Song et al., 2021; Peng et al.,
2021; Xiong et al., 2021; Nguyen et al., 2021). A thorough survey of recent advances in efficient
transformers is available at (Tay et al., 2020c). These efficient transformers have better memory
and/or computational efficiency at the cost of a significant reduction in accuracy.

1.1. Motivation

Katharopoulos et al. (2020) have established a connection between transformers and recurrent neu-
ral networks (RNNs) through the kernel trick. They propose the linear transformer, which can be
considered a rank-one approximation of the softmax transformer. Linear transformers have compu-
tational advantages in training, test, and inference: the RNN formulation (see Equation (8) below)
enjoys fast inference, especially for autoregressive tasks, and the unrolled RNN formulation (see
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Equation (6) below) is efficient for fast training. See section 2 for a detailed review of the linear
transformer and its advantages. Nguyen et al. (2020) proposes integrating momentum into RNNs
to accelerate training RNNs and improve learning long-term dependencies. We notice that Momen-
tumRNN also enjoys a closed unrolling form, which is quite unique among existing techniques for
improving RNNs, enabling fast training, test, and inference; see section 3 for details. As such, in
this paper we study how does momentum improves linear transformers?

1.2. Contribution

We propose momentum transformers by integrating two new momentum-related ingredients into
the recently proposed linear transformers (Katharopoulos et al., 2020) and its RNN formulation to
improve the model’s accuracy and efficiency. Our contributions include: 1) Similar to (Nguyen
et al., 2020), we make an analogy between the RNN formulation of causal linear attention, which
is the linear attention with causal masking for auto-regressive applications (Katharopoulos et al.,
2020), and a gradient descent step. We then integrate the heavy ball-style momentum into this
RNN formulation and result in the causal momentum attention. We extend this causal momentum
attention into momentum attention for both autoregressive and non-autoregressive applications. We
name the transformer with the new momentum attention the momentum transformer. 2) We further
introduce another momentum into the residual connection between the attention V̂ and the input X
in (4) to enhance the model’s performance. 3) We develop a new adaptive strategy to compute the
momentum value and eliminate the burden of tuning momentum hyperparameters in our model. We
name the momentum transformer with adaptive momentum the adaptive momentum transformer.
The major advantages of momentum-based transformers include:

• Momentum and adaptive momentum transformers inherit memory and computational effi-
ciency from the linear transformers while achieving better accuracy.

• The training of momentum-based transformers converges remarkably faster than the training
of linear transformers.

• The design principle of momentum transformers is rooted in momentum-based optimization
algorithms, enabling us to design more general and advanced momentum transformers for a
wide range of applications.

1.3. Related Work

In this part, we briefly review three lines of recent research that are most related to our work: 1)
momentum in optimization and sampling, 2) momentum in deep neural network (DNN) design and
3) algorithms for efficient transformers.

Momentum in optimization and sampling Momentum has been a popular technique for accel-
erating (stochastic) gradient-based optimization (Polyak, 1964; Goh, 2017; Sutskever et al., 2013;
Kingma and Ba, 2014; Paszke et al., 2019; Sun et al., 2021) and sampling algorithms (Duane et al.,
1987; Neal et al.; Chen et al., 2014; Betancourt, 2017). A particularly interesting momentum is
the iteration-dependent one in NAG (Nesterov, 1983; Nemirovskii and Nesterov, 1985; Beck and
Teboulle, 2009), which has a significantly better convergence rate than constant momentum for con-
vex optimization. The stochastic gradient NAG that employs a scheduled restart can also be used to
accelerate DNN training with better accuracy and faster convergence (Wang et al., 2022).
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DNNs with momentum. Momentum has been used for designing DNN architectures. He et al.
(2019) employ momentum to build large and consistent dictionaries for unsupervised learning with
a contrastive loss leveraging momentum-based moving average of the queue encoder. Many DNN-
based methods for sparse coding are designed by unfolding the classical optimization algorithms
with momentum, e.g., FISTA (Beck and Teboulle, 2009). MomentumRNNs (Nguyen et al., 2020;
Wang et al., 2021) are a class of RNNs that are designed based on momentum accelerated first-order
optimization algorithms. MomentumRNNs can effectively resolve the vanishing gradient issue in
training RNNs and obtain faster training and better performance over traditional RNNs. Momentum
has also been integrated into ResNets (Li et al., 2018) and neural ODEs Xia et al. (2021).

Efficient transformers. Existing efficient transformers can be roughly classified into several cate-
gories, as summarized in (Roy et al., 2021). Among these categories are models with fixed patterns,
which sparsify the attention matrix (Parmar et al., 2018; Liu et al., 2018; Qiu et al., 2019; Child
et al., 2019; Beltagy et al., 2020). Another category includes models that integrate two or more dis-
tinct access patterns to improve the coverage (Child et al., 2019; Ho et al., 2019). Learnable patterns
are also leveraged to learn the access pattern in a data-driven fashion (Kitaev et al., 2020; Roy et al.,
2021; Tay et al., 2020b). Some other efficient transformers take advantage of a side memory module
to access multiple tokens at once (Lee et al., 2019; Sukhbaatar et al., 2019; Asai and Choi, 2020;
Beltagy et al., 2020). Finally, low-rank and kernelization approximation are employed to improve
the memory and computational efficiency of computing self-attention, see e.g., (Tsai et al., 2019;
Wang et al., 2020; Katharopoulos et al., 2020; Choromanski and et al., 2021; Shen et al., 2021).

1.4. Notations

We denote scalars by lower- or upper-case letters. We also denote vectors and matrices by lower-
and upper-case boldface letters, respectively. For a vector x = (x1, . . . , xd)

> ∈ Rd, where
(x1, . . . , xd)

> denotes the transpose of the vector (x1, . . . , xd), we use ‖x‖ = (
∑d

i=1 |xi|2)1/2
to denote its `2 norm. We denote the vector whose entries are all 0s as 0. For a matrix A, we
use A>, A−1, and ‖A‖ to denote its transpose, inverse, and spectral norm, respectively. We use
I to denote the identity matrix, whose dimension can be determined in its context. For a function
f(x) : Rd → R, we denote its gradient as ∇f(x). Given two sequences {an} and {bn}, we write
an = O(bn) if there exists a positive constant 0 < C < +∞ such that an ≤ Cbn.

1.5. Organization

We organize this paper as follows: In section 2, we review the kernelization trick used to linearize
the softmax attention and the RNN formulation of the linear transformer with causal masking. In
section 3, we present the momentum transformer and adaptive momentum transformer, providing
the motivation and detailed derivation. We verify the efficiency of our momentum-based transform-
ers on various applications, including both autoregressive and non-autoregressive tasks in section 4.
The paper ends up with concluding remarks.
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2. Linear Transformer

Transformers learn long-term dependencies in sequences effectively and concurrently through the
self-attention mechanism. By denoting k(qi,kj) := exp(q>i kj/

√
D), we can rewrite (1) as

v̂i = (
N∑
j=1

k(qi,kj)vj)/(
N∑
j=1

k(qi,kj)).

In linear transformers (Wang et al., 2020; Katharopoulos et al., 2020; Choromanski and et al., 2021;
Shen et al., 2021), the feature map k(qi,kj) is linearized as the product of feature maps φ(·) on the
vectors qi and kj , i.e., k(qi,kj) = φ(qi)

>φ(kj). The associative property of matrix multiplication
is then utilized to derive the following efficient computation of the attention map

v̂i =

∑N
j=1 k(qi,kj)vj∑N
j=1 k(qi,kj)

=

∑N
j=1 φ(qi)

>φ(kj)vj∑N
j=1 φ(qi)

>φ(kj)
=
φ(qi)

>∑N
j=1 φ(kj)v

>
j

φ(qi)>
∑N

j=1 φ(kj)
. (5)

In the matrix-product form, we can further write (5) as follows

V̂ =
φ(Q)(φ(K)>V )

φ(Q)φ(K)>
. (6)

Replacing (φ(Q)φ(K>))V with φ(Q)(φ(K>)V ) reduces the memory and computational cost of
computing the attention map from O(N2) to O(N), making linear transformers scalable to very
long sequences.

Furthermore, causal masking can be easily implemented in the linearized attention by truncating
the summation term in the last equation of (5), resulting in

v̂i =
φ(qi)

>∑i
j=1 φ(kj)v

>
j

φ(qi)>
∑i

j=1 φ(kj)
:=

φ(qi)
>si

φ(qi)>zi
, (7)

where si =
∑i

j=1 φ(kj)v
>
j and zi =

∑i
j=1 φ(kj). The states si and zi can be computed in a

recurrent fashion.

Efficient inference via the RNN formulation. Self-attention processes tokens of a sequence con-
currently, enabling fast training of transformers via layerwise parallelism. However, during infer-
ence, the output for timestep i is the input for timestep i+ 1. As a result, the inference in standard
transformers cannot be parallelized and is thus computationally inefficient. Linear transformers pro-
vide an elegant approach to fixing this issue by leveraging their RNN formulation. In particular, we
can further write the linear attention with causal masking in (7) into the following RNN form1

si = si−1 + φ(ki)v
>
i ;

zi = zi−1 + φ(ki);

v̂i =
φ(qi)

>si
φ(qi)>zi

,

(8)

where s0 = 0 and z0 = 0. Note that this RNN formulation of linear transformers with causal
masking contains two memory states si and zi.

1. For simplicity, we omit the nonlinearity (a two-layer feedforward network) compared to (Katharopoulos et al., 2020).
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3. Momentum Transformer

In this section, we present the momentum transformer. We start by integrating the heavy ball mo-
mentum into the RNN formulation of causal linear attention in (8), resulting in the causal momen-
tum attention. Next, we generalize the causal momentum attention to momentum attention that can
efficiently train the model. Moreover, we propose the momentum connection to replace residual
connections between the attention V̂ and the input X in (4) to boost the model’s performance. Fi-
nally, we derive the adaptive momentum attention from the theory of optimal choice of momentum
for the heavy ball method.

3.1. Momentum Transformer

Heavy ball momentum. Let us recall the heavy ball momentum for accelerating gradient descent
in solving minx∈Rd f(x) (Polyak, 1964). Starting from x0 and x1, the heavy ball method iterates
as follows

xk+1 = xk − γ∇f(xk) + β(xk − xk−1), (9)

where γ > 0 is the step size and 0 ≤ β < 1 is the momentum parameter. By introducing the
momentum state m, we can rewrite the HB method as

mk+1 = βmk +∇f(xk); xk+1 = xk − γmk+1. (10)

In contrast, gradient descent updates at each step as follows

xk+1 = xk − γ∇f(xk). (11)

Integrating momentum into causal linear attention. Now we consider integrating the heavy
ball momentum into causal linear attention. We integrate momentum into the state si in (8) only
since the denominator in causal linear attention is simply a normalizing scalar. If we regard−φ(ki)v>i
as the gradient vector in (11), then we can add momentum into the state si by following the heavy
ball method in (10), resulting in the following RNN formulation of causal momentum attention,

mi = βmi−1 − φ(ki)v>i ;
si = si−1 − γmi;

zi = zi−1 + φ(ki);

v̂i =
φ(qi)

>si
φ(qi)>zi

,

(12)

where m0 = 0, and γ > 0 and 0 ≤ β < 1 are two hyperparameters. The RNN formulation of
causal momentum attention in (12) is efficient for autoregressive inference. For efficient training,
we need to rewrite (12) into a form that is similar to the linear attention in (7). To this end, we need
to eliminate the states mi, si, and zi from (12). Notice that

si = si−1 − γmi︸︷︷︸
:=pi

= s0︸︷︷︸
=0

−
(
pi + pi−1 + . . .+ p1

)
,
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since mi = βmi−1 − φ(ki)v>i , we have pi = βpi−1 − γφ(ki)v>i . Therefore,

si = −(pi + pi−1 + . . .+ p1)

= γφ(ki)v
>
i −

(
(1 + β)pi−1 + pi−2 + . . .+ p1

)
= γφ(ki)v

>
i + γ(1 + β)φ(ki)v

>
i

−
(
(1 + β)2pi−2 + . . .+ p1

)
= . . .

= γ
i∑

j=1

1− βi−j+1

1− β
φ(kj)v

>
j for i ≥ 1.

We can then formulate the causal momentum attention as follows

v̂i =
γφ(qi)

>∑i
j=1

(
1−βi−j+1

1−β φ(kj)v
>
j

)
φ(qi)>zi

. (13)

Note that (13) is mathematically equivalent to (12), but it can be trained much more efficiently in a
concurrent fashion via layerwise parallelism.

Remark 1 Comparing (13) with (7) , we see that momentum plays a role in reweighting the terms
{φ(kj)v>j }ij=1. It is interesting to note that this reweighting is opposite to that used for reweighting
the local attention (Dai et al., 2019). It has also been noticed that low-rank attention can comple-
ment local attention, resulting in improved performance (Nguyen et al., 2021). Often local attention
behaves quite differently from low-rank attention, and different reweighting can be beneficial. One
particular reweighting strategy is decomposing softmax attention into long and short-range compo-
nents and using different weighting schemes for each part. We leave the study of reweighting local
attention and low-rank attention differently as future work.

Integrating momentum into linear attention. To obtain momentum attention without causal
masking, we can simply take the sum from 1 to N instead of summing from 1 to i. Therefore, we
obtain the following momentum attention

v̂i =
γφ(qi)

>∑N
j=1

(
1−βN−j+1

1−β φ(kj)v
>
j

)
φ(qi)>

∑N
j=1 φ(kj)

. (14)

Memory and computational complexity. It is clear that training momentum transformers have
the same memory and computational complexities of O(N) as the training of linear transformers.
For test and inference, momentum transformers also have the same memory and computational
complexities as linear transformers. However, in the RNN form, momentum transformers require
slightly more memory than linear transformers to store the extra momentum state mi.

3.2. Momentum Connection

On top of the self-attention unit, each transformer layer has a residual connection between the self-
attention output and the input as shown in (4). We further integrate momentum into (4) and derive
the momentum connection as follows
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T`(X) = f`
(
V̂ +X + β̃(X − T`−1(X))

)
, (15)

where 0 ≤ β̃ < 1 is a hyperparameter.

3.2.1. ADAPTIVE MOMENTUM

Our momentum transformer introduces additional hyperparameters γ and β, as well as β̃, compared
to the linear transformer. In section 4, we show that γ can be simply set to 1 in many experiments.
However, tuning the momentum-related hyperparameters β and β̃ can introduce extra computational
cost for training transformers. Moreover, using a constant momentum may not give us optimal
performance. In this section, we will introduce an adaptive momentum formula for computing
the momentum hyperparameter in momentum connection and thus eliminating the computational
overhead for tuning β̃. Here, the adaptive momentum does not apply to β since it will break the
closed unrolling form in (13).

Optimal choice of heavy ball momentum. We motivate our adaptive momentum from the opti-
mal choice of the heavy ball momentum for solving the following quadratic minimization problem

min
x
f(x) :=

1

2
x>Ax+ x>b. (16)

The following theorem gives the optimal choice of β for (10) to solve (16).

Theorem 2 (Sun et al. (2021)) Let f(x) be the quadratic function (16) with ∇f(x) = Ax + b,
where A is positive definite. Moreover, we denote the smallest (λmin(A)) and the largest eigenval-
ues (λmax(A)) of A as ν and L, respectively. Given any fixed step size γ ≤ 1/L, the optimal choice
for β is β̃ = (1−√γν)2. In this case, the heavy ball method achieves a convergence rate of

‖xk+1 − x∗‖ ≤ (1−√γν)‖xk − x∗‖,

where x∗ is the minimum of the quadratic function (16).

Theorem 2 shows that the optimal momentum for the heavy ball method should be (1−√γν)2
if γ ≤ 1/L. However, the smallest eigenvalue ν is usually unknown. Therefore, we consider
constructing the sequence {‖∇f(xk)−∇f(xk−1)‖/‖xk−xk−1‖}k≥1 to approximate ν. We have
the following theoretical result to guarantee that ‖∇f(xk) − ∇f(xk−1)‖/‖xk − xk−1‖ → ν as
k →∞.

Proposition 3 (Sun et al. (2021)) Assume that conditions in Theorem 2 hold and {xk}k≥0 is gen-
erated by the heavy ball method (10). If γ ≤ 1/L, for any fixed 0 ≤ β < 1, we have

lim
k→∞

‖∇f(xk)−∇f(xk−1)‖
‖xk − xk−1‖

= ν.

In practice, for a given step size γ, we restrict the adaptive momentum to be in the range [0, 1−δ]
with δ being the threshold parameter, and we choose it to be 10−3 in this work. Hence, we have the
following adaptive momentum

proj[0,1−δ]

(
1−

√
γ
‖∇f(xk)−∇f(xk−1)‖

‖xk − xk−1‖

)2

, (17)
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Figure 1: Convergence comparison of adaptive momentum, momentum, reformer, linear, and soft-
max transformer on the sequence copy task. Momentum and adaptive momentum trans-
formers converge faster and achieve better training loss than both linear transformer and
reformer. Softmax transformer converges the fastest but suffers from quadratic memory
and computational complexities. Adaptive momentum transformer performs as well as
momentum transformer without intensively searching for momentum values. The train-
ing time per epoch for softmax transformer, reformer, linear transformer, our momentum
transformer without and with momentum connection, and our adaptive momentum trans-
former are 7.1, 6.9, 6.4, 6.5, 6.6, and 6.8 seconds, respectively. Here, the computational
time per epoch does not reveal a significant advantage of efficient transformers over the
softmax transformer because the sequence length is only 128.

where proj[0,1−δ](·) := max(0,min(1− δ, ·)). To simplify our computation, we apply the gradient
descent update to approximate xk−xk−1, i.e., we approximate xk−xk−1 by γ∇f(xk−1), and we
end up with

β̃k := proj[0,1−δ]

(
1−

√
‖∇f(xk)−∇f(xk−1)‖

‖∇f(xk−1)‖

)2

. (18)

4. Experimental Results

In this section, we evaluate the benefits of our momentum transformers in terms of convergence
speed, efficiency, and accuracy. We compare the performance of momentum and adaptive mo-
mentum transformers 2 with the baseline standard softmax transformer and several other efficient
transformers in the following tasks: 1) the synthetic copy task, 2) the MNIST and CIFAR image
generation task, 3) Long-Range Arena (Tay et al., 2021), and 4) the non-autoregressive machine
translation task. These tasks are among standard benchmarks for measuring the performance of
transformers and their computational and memory efficiency. The tasks we choose also cover dif-
ferent data modalities — text and image — and a variety of model sizes. Our experimental results
confirm that momentum and adaptive momentum transformers outperform many existing efficient
transformers, including linear transformers and reformers, in accuracy and convergence. Further-
more, adaptive momentum transformer improves over momentum transformer without the need of

2. Here, the momentum and adaptive momentum transformers are built on the same baseline architecture of the linear
transformer in terms of the number of layers and number of heads.
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Table 1: Momentum and Stepsize Hyperparameteres for Momentum-based Transformers.
Model Momentum Stepsize Momentum in Stepsize in

Momentum Connection Momentum Connection

Copy Task

Momentum transformer 0.1 0.6
Momentum transformer 0.1 0.6 0.99 0.99
+ Momentum connection
Adatptive momentum transformer 0.1 0.6 0.99

MNIST Generation

Momentum transformer 0.6 0.9
Momentum transformer 0.6 0.9 0.1 0.99
+ Momentum connection
Adatptive momentum transformer 0.6 0.9 0.99

CIFAR Generation

Momentum transformer 0.1 0.9
Momentum transformer 0.1 0.9 0.1 0.9
+ Momentum connection
Adatptive momentum transformer 0.1 0.9 0.9

Non-Autoregressive Machine Translation

Momentum transformer 0.6 0.6
Momentum transformer 0.6 0.6 0.3 0.9
+ Momentum connection
Adatptive momentum transformer 0.6 0.6 0.9

ListOps

Momentum transformer 0.1 0.6
Adatptive momentum transformer 0.1 0.6 0.4

Text

Momentum transformer 0.6 2.0
Adatptive momentum transformer 0.6 2.0 0.001

Retrieval

Momentum transformer 0.6 1.0
Adatptive momentum transformer 0.6 1.0 0.5

Image

Momentum transformer 0.9 0.9
Adatptive momentum transformer 0.9 0.9 0.001

Pathfinder

Momentum transformer 0.3 0.1
Adatptive momentum transformer 0.3 0.1 0.8

searching for momentum hyperparameter for the momentum connection. Values of momentum-
related hyperparameters for experiments in our experiments are provided in Table 1 below.
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Method Bits/dim Images/sec
Standard softmax transformer 0.84 0.45 (1×)
Linear transformer 0.85 142.8 (317×)
Momentum transformer 0.84 139.7 (310×)
Momentum transformer + momentum connection 0.82 135.5 (301×)
Adaptive momentum transformer 0.80 134.9 (300×)

Table 2: Momentum transformers achieve better test bits/dim than both softmax and linear trans-
formers on MNIST generation.

4.1. Copy Task

We train momentum transformers and baseline models on a synthetic copy task to analyze their
convergence speed. In this task, the model has to duplicate a sequence of symbols. Each training and
test sample has the form 0w0w wherew is a sequence of symbols collected from the set {1, . . . , N}.
An example with the word w of length 3 is given below.

Example: 0 15 124 71 0 15 124 71

In our experiments, we follow the same experimental setting as that used by Katharopoulos
et al. (2020). In particular, we use a sequence of maximum length 128 with 10 different symbols
separated by a separator symbol. The baseline architecture for all methods is a 4-layer transformer
with 8 attention heads and D = 32. The models are trained with the RAdam optimizer using a
batch size of 64 and a learning rate of 10−3 which is reduced to 10−4 after 3000 iterations. Figure 1
shows the training loss and the test accuracy over epochs and over GPU time. Both the momentum
and the adaptive momentum transformers converge much faster and achieve better training loss than
the linear transformer. Notice that while the standard softmax transformer converges the fastest, it
has quadratic complexity.

4.2. Image Generation

Transformers have shown great promise in autoregressive generation applications (Radford et al.,
2019; Child et al., 2019), such as autoregressive image generation (Ramesh et al., 2020). How-
ever, the training and sampling procedure using transformers are quite slow for these tasks due to
the quadratic computational time complexity and the memory scaling with respect to the sequence
length. In this section, we train our momentum-based transformers and the baselines with causal
masking to predict images pixel by pixel and compare their performance. In particular, we demon-
strate that, like linear transformers, both momentum and adaptive momentum transformers are able
to generate images much faster than the standard softmax transformer. Furthermore, we show that
momentum-based transformers converge much faster than linear transformers while achieving bet-
ter bits per dimension (bits/dim). We compare the generated images by different models in the
Appendix. Note that momentum and adaptive momentum transformers also generate images with
constant memory per image like linear transformers.
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Figure 2: Momentum transformers outperform linear transformers on the MNIST image generation
task. Adaptive momentum transformer achieves the best test bits/dim.

MNIST. We first examine our momentum-based transformers on the MNIST image generation
task. MNIST is a popular benchmark dataset used for image recognition and generation. For all
methods, we train a 8-layer transformer with 8 attention heads and the embedding size of 256,
which corresponds to 32 dimensions per head. The feedforward dimensions are 4 times larger than
the embedding size. A mixture of 10 logistics is used to model the output as in (Salimans et al.,
2017). For training, we use the RAdam optimizer with a learning rate of 10−4 and train all models
for 250 epochs except for the adaptive momentum transformer.

We report the bits/dim and image generation throughput in Table 2. Compared to the linear
transformer, all momentum-based transformers not only attain better bits/dim but also have com-
parable image generation throughput, justifying the linear complexity of our models. In addition,
we demonstrate that the adaptive momentum transformer converges much faster than the baseline
models in Figure 2. Momentum-based transformers even outperform softmax transformers in this
task.

We also compare our adaptive momentum transformer with the standard softmax and linear
transformer qualitatively. In particular, we analyze the models trained for the MNIST image gener-
ation task and show the generated images from each model in Figure 3. We observe that the quality
of images generated from the adaptive momentum transformer and linear transformer is as high as
the quality of images generated from the softmax transformer while the first two models are much
more computational and memory efficient.

CIFAR10. Next, we investigate the advantages of our momentum-based transformers when the
sequence length and the number of layers in the model increase. We consider the CIFAR-10 image
generation task, in which we train 16-layer transformers to generate CIFAR-10 images. The config-
uration for each layer is the same as in the MNIST experiment. For the linear transformer and our
momentum-based transformer, we use a batch size of 4 while using a batch size of 1 for the stan-
dard softmax transformer due to the memory limit of the largest GPU available to us, i.e., NVIDIA

12
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Adaptive Momentum TransformerLinear TransformerSoftmax Transformer

Figure 3: MNIST samples generated by the standard softmax transformer (left) (Vaswani et al.,
2017), the linear transformer (middle) (Katharopoulos et al., 2020), and the adaptive mo-
mentum transformer (right).

Method Bits/dim Images/sec
Standard softmax transformer 3.20 0.004 (1×)
Linear transformer 3.44 17.85 (4462×)
Momentum transformer 3.43 17.52 (4380×)
Momentum transformer + momentum connection 3.41 17.11 (4277×)
Adaptive momentum transformer 3.38 17.07 (4267×)

Table 3: Momentum-based transformers achieve better test bits/dim than linear transformer on CI-
FAR10 image generation task.

V100. This is similar to the setting in (Katharopoulos et al., 2020). Like in the MNIST image
generation task, our momentum-based transformers outperform the linear transformer in terms of
bits/dim while maintaining comparable image generation throughput. This is a very expensive task,
limiting us to perform a thorough hyperparameter search; we believe better results can be obtained
with a more thorough hyperparameter search.

4.3. Long-Range Arena

In this experiment, we evaluate our model on tasks that involve longer sequence lengths in the Long
Range Arena (LRA) benchmark (Tay et al., 2021). We show that the momentum-based transformer
outperforms the baseline linear transformer and other popular efficient transformers, including per-
former (Choromanski and et al., 2021), reformer (Kitaev et al., 2020), and linformer (Wang et al.,
2020). We also demonstrate that our momentum-based transformer yields better accuracy than the
standard softmax transformer (Vaswani et al., 2017) in most tasks except the ListOps. These results
justify the advantage of our momentum-based transformers in capturing long-term dependency.

Datasets and metrics We consider all five tasks in the LRA benchmark (Tay et al., 2021), includ-
ing Listops, byte-level IMDb reviews text classification, byte-level document retrieval, CIFAR-10

13
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Model ListOps (2K) Text (4K) Retrieval (4K) Image (1K) Pathfinder (1K) Avg
Softmax 37.10 (37.10) 64.17 (65.02) 80.71 (79.35) 39.06 (38.20) 72.48 (74.16) 58.70 (58.77)
Linear 18.30 64.22 81.37 38.29 71.17 54.67

Performer 18.80 63.81 78.62 37.07 69.87 53.63
Reformer 19.05 64.88 78.64 43.29 69.36 55.04
Linformer 37.25 55.91 79.37 37.84 67.60 55.59

Momentum transformer 19.56 64.35 81.95 39.40 73.12 55.68
Adaptive momentum 20.16 64.45 82.07 39.53 74.00 56.04

transformer

Table 4: Results on the LRA tasks. We report the test classification accuracy for each task and aver-
age accuracy across all tasks. The momentum-based transformers, in particular, the adap-
tive momentum transformer, outperforms all other transformers except on the ListOps.
The numbers in the parenthesis are from the paper (Xiong et al., 2021). Unit: %.

Method BLEU Score Speed (tokens/s)
Standard softmax transformer 24.34 5104
Linear transformer 21.37 1382
Momentum transformer 22.11 1398
Momentum transformer + momentum connection 22.14 1403
Adaptive momentum transformer 22.20 1410

Table 5: BLEU scores and tokens per second from machine translation models trained on IWSLT
show the advantages of our momentum-based transformers. The number of trainable pa-
rameters is almost the same for all models, up to the small difference introduced by the
momentum mechanism in our models. Momentum-based transformers outperform the
linear transformer in generation quality in terms of BLEU score and obtain comparable
generation efficiency in terms of tokens per second.

image classification on sequences of pixels, and Pathfinder. These tasks involve long sequences of
length 2K, 4K, 4K, 1K, and 1K, respectively. We follow the setup/evaluation protocol in (Tay
et al., 2021) and report the test accuracy for each task and the average result across all tasks.

Models and training All models have 2 layers, 64 embedding dimension, 128 hidden dimension,
2 attention heads. Mean pooling is applied in all models. Also, we use the nonlinear activation
elu(x) + 1 for the linear transformer. Our implementation uses the public code by Xiong et al.
(2021) as a starting point, and we follow their training procedures. The training setting and ad-
ditional baseline model details are provided in the configuration file used in (Xiong et al., 2021)
and can be found at https://github.com/mlpen/Nystromformer/blob/main/LRA/
code/lra_config.py.

Results We summarize our results in Table 4. Both momentum-based transformers outperform
linear transformers in all tasks and yield better accuracy than the standard softmax transformer in
most tasks except the Listops. The adaptive momentum transformer performs the best on every task
except the LipsOps, far behind the softmax transformer and Linformer.
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Figure 4: Ablation study of the effects of β̃ on the performance of momentum transformer with

momentum connection in the synthetic copy task. We report the train loss (Left) and test
accuracy (Right). Adaptive β̃ (the blue curve) yields similar train loss and test accuracy
as the best constant β̃ found by a careful search.

4.4. Non-Autoregressive Machine Translation

The previous experiments are for auto-regressive tasks. In this experiment, we demonstrate that the
benefits of our momentum-based transformers also hold for a non-autoregressive task. We consider
a machine translation task on the popular IWSLT’ 16 En-De dataset. We follow the setting in (Lee
et al., 2018). In particular, we tokenize each sentence using a script from Moses (Koehn and et al.,
2007) and segment each word into subword units using BPE (Sennrich et al., 2016). We also use
40K tokens from both source and target. Our baseline model is the small transformer-based network
in (Lee et al., 2018) with dmodel = 278, dhidden = 507, pdropout = 0.1, nlayer = 5, and nhead = 2.
This model has 5 layers, and each layer has 2 attention heads. A depiction of this architecture is
given in Figure 2 in (Lee et al., 2018). The block “Encoder” encodes the input X, the block “Decoder
1” computes the conditional log p(Y 0|X), and the block “Decoder 2” is shared across iterative
refinement steps, calculating log p(Y `| ˆY `−1, X). For the baseline standard softmax transformer
model, we use the same architecture as in (Lee et al., 2018) with an additional positional attention
and using the highway layer in the decoders. For the linear and our momentum-based transformer
models, we replace the softmax attention with the linear attention and momentum-based attention,
respectively. During training, we use linear annealing learning rate scheduling (from 3 × 10−4 to
10−5). We do not use label smoothing nor average multiple check-pointed models.

Table 5 reports the results in terms of generation quality, measured by the BLEU score (Papineni
et al., 2002), and generation efficiency, measured by the number of generated tokens per second.
Consistent with other experiments above, our momentum-based transformers obtain better BLEU
scores than the linear transformer in this non-autoregressive setting. Furthermore, in terms of gen-
eration efficiency, momentum-based models are comparable with the linear transformer and much
more efficient than the standard softmax transformer.

4.5. Ablation Studies

Effects of β̃ on the performance of momentum transformer with momentum connection. We
have conducted an ablation study to analyze how values of β̃ in momentum connection influence
the the performance of momentum transformer with momentum connection in the synthetic copy
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Figure 5: Ablation study of the effects of momentum β in the momentum attention on the perfor-

mance of adaptive momentum transformer in the synthetic copy task. We report the train
loss (Left) and test accuracy (Right). Smaller β yields better results.

task. Figure 4 shows that the transformer with adaptive β̃ (the blue curve) achieves as good train
loss and test accuracy as the transformer with the best constant β̃ that are carefully fine-tuned, i.e.
β̃ = 0.01. Note that our adaptive approach to computing β̃ eliminates the need of expensive search
for the good values of β̃.

Effects β in the momentum attention on the performance adaptive momentum transformer.
We have conducted another ablation study on how the values of β in the momentum attention
affect the performance of the adaptive momentum transformer in the synthetic copy task. Figure 5
demonstrates that smaller β yields better results in terms of train loss and test accuracy than large
ones. We also notice that when β ≥ 1, the training is unstable and does not converge.

5. Concluding Remarks

In this paper, we developed a new class of efficient transformers, i.e., momentum transformers,
which have the same memory and computational complexity as the recently developed linear trans-
former. We developed momentum transformers based on an analogy between the RNN formulation
of causal linear attention and gradient descent. Then we integrate the momentum into causal linear
attention following the heavy ball method. Furthermore, we introduce an additional momentum into
the residual connection between the attention V̂ and the input X in (4) to further improve the per-
formance of the model. To eliminate the computational overhead for tuning the momentum-related
hyperparameters and enhancing momentum transformers’ performance, we developed the adaptive
momentum transformer that can adaptively compute the momentum values based on the optimal
momentum choice for the heavy ball method for quadratic optimization. An interesting observation
is that the momentum attention can be understood as a reweighting between the product of the “key”
and “value” in the standard attention model. There are numerous avenues for future work: 1) can
we develop momentum transformers based on other popular optimization algorithms beyond the
heavy ball method, e.g., Adam? And 2) can we design better weighting schemes to improve the
performance of transformers?
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