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Abstract
We analyse the difference in convergence mode using exact versus penalised boundary values for
the residual minimisation of PDEs with neural network type ansatz functions, as is commonly done
in the context of physics informed neural networks. It is known that using an L2 boundary penalty
leads to a loss of regularity of 3/2 meaning that approximation in H2 yields a posteriori estimates
in H1/2. These notes demonstrate how this loss of regularity can be circumvented if the functions
in the ansatz class satisfy the boundary values exactly. Furthermore, it is shown that in this case,
the loss function provides a consistent a posteriori error estimator in H2 norm made by the residual
minimisation method. We provide analogue results for linear time dependent problems and discuss
the implications of measuring the residual in Sobolev norms.
Keywords: Residual minimisation, Physics informed neural networks, Neural networks

1. Introduction

After their striking success in supervised learning tasks, neural network based methods have recently
gained more attraction for problems from numerical analysis. Neural network based approaches for
the approximate solutions of PDEs can be traced back to Dissanayake and Phan-Thien (1994) where
they proposed to combine residual minimisation with a boundary penalty term in order to train the
parameters of a neural network. This ansatz was recently revived by Sirignano and Spiliopoulos
(2018), embracing increased computational power due to the heavy usage of GPUs and has received
a growing amount of attention since then, see E and Yu (2018); Raissi and Karniadakis (2018) and
subsequent work.

Due to the unconstrained nature of neural networks, resolving boundary conditions for PDEs is
challenging as noted by E and Yu (2018); van der Meer et al. (2020); Cyr et al. (2020). The work
of Lagaris et al. (1998) proposes to encode boundary conditions directly into the trial functions.
This approach was refined and extended by Berg and Nyström (2018); Lyu et al. (2020) and it was
observed that such an ansatz frequently helps in producing more accurate solutions.

As our main contribution we show that for residual minimisation H2 approximation yields
estimates in H2 for ansatz classes with exact boundary values, see Theorem 5. In contrast, using an
L2 penalty on the boundary values leads to error estimates in norms not stronger than H1/2. The
extension to more general equations, including time dependant ones, is discussed as well.
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1.1. Physics informed neural networks

Suppose, we want to approximately solve the Dirichlet problem

−∆u = f in Ω

u = g on ∂Ω,
(1)

where f ∈ L2(Ω) and g ∈ H3/2(∂Ω). We assume that this problem is well posed and denote its so-
lution by uf ∈ H2(Ω), compare also to Remark 2. There exist different approaches to this problem,
which usually formulate the Dirichlet problem (1) as a minimisation problem over a function space
and then minimise this energy over a suitable ansatz class. One of those approaches was proposed
by Lagaris et al. (1998) is the method of residual minimisation. It has received growing attention
in the recent advancement of neural network based methods where it is often referred to as physics
informed neural networks or PINNs following the work of Raissi et al. (2019). The idea of residual
minimisation is to perceive the Dirichlet problem as the problem of minimising the residual energy

L : Θ→ R, θ 7→ ‖∆uθ + f‖2L2(Ω) + τ‖uθ − g‖2L2(∂Ω)

for some τ ∈ (0,∞).
As L(θ) measures the deviation of−∆uθ of the right hand side f and of the boundary values, it

is a natural approach to minimise L over the parameter space Θ. In order to give a theoretical justi-
fication for this approach, one can exploit elliptic regularity theory in order to show the a posteriori
estimate

‖uθ − uf‖2Hs(Ω) ≤ c · L(θ). (2)

If such an estimate holds, then successful minimisation of L implies approximation of the solution
uf in some norm. Note that an estimate of the form (2) provides an a posteriori error estimate which
is readily accessible throughout the training process. In particular, if θ∗ ∈ Θ minimises L over Θ,
then

‖uθ∗ − uf‖2Hs(Ω) ≤ c · inf
θ∈Θ
L(θ) ≤ c̃ · inf

θ∈Θ
‖uθ − uf‖2H2(Ω). (3)

In particular, approximation capabilities in H2 in combination with successful training imply error
estimates in Hs. This directly yields that only s ≤ 2 are potentially achievable in the a posteriori
estimate (2). For s ≤ 1/2 an according estimate has been established by Shin et al. (2020), i.e.,
H2 approximation and successful training implies convergence in H1/2. In this sense, the approach
of residual minimisation leads to a loss in regularity of 3/2. It is the purpose of these notes to
show that it is not possible to obtain error estimates for s > 1/2 in general and that for function
classes with exact boundary values, i.e. uθ ∈ H2(Ω) ∩ H1

g (Ω)1 the estimates can be improved
to hold for all s ≤ 2. Hence, in this case the loss of regularity can be mitigated which shows a
theoretical advantage of ansatz classes which exactly satisfy the boundary conditions. Our proofs
rely on curvature based estimates. We discuss how measuring the residual in Sobolev norms implies
estimates in higher order Sobolev norms and generalise our findings to a class of parabolic evolution
equations.

In both the stationary and instationary case our estimates are with respect to stronger norms
than for the case of penalised boundary values , see Shin et al. (2020); Mishra and Molinaro (2022).
More precisely, Theorem 5 shows thatH2 approximation yields estimates inH2 for exact boundary

1. here, H1
g (Ω) denotes the affine subspace of H1(Ω) of functions that agree with g on ∂Ω
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values, where it is only able to provide H1/2 estimates for penalised boundary values. Where we
work with the population loss, those works also include the quadrature of the appearing integrals.
This routine work can be transferred to our analysis without problems.

Exact Dirichlet Boundary Conditions for Neural Networks Standard neural network archi-
tectures are usually designed for unconstrained optimization, e.g. it is hardly possible to encode
boundary values into a standard neural network architecture. However, following Lagaris et al.
(1998), we can transform any unconstrained neural network architecture into an ansatz space with
the desired boundary conditions. Assume we want to solve the Poisson problem (1) on Ω with
boundary values g. We then construct a smooth function L : Ω → [0,∞) that satisfies L|∂Ω = 0
and L|Ω 6= 0. The function L is often referred to as a smooth approximation of the distance function
to ∂Ω. Furthermore, we denote by G ∈ H2(Ω) a lift of the boundary conditions to all of Ω, i.e. G
satisfies G|∂Ω = g. For any neural network family {uθ | θ ∈ Θ} ⊆ H2(Ω) we then consider the
associated family

{L · uθ +G | θ ∈ Θ} ⊆ H2(Ω) ∩H1
g (Ω) (4)

and use these functions to approximate the solution of (1). For complex domains it is difficult to
obtain L and G analytically and thus the approximation via neural networks was proposed by Berg
and Nyström (2018). For time dependent problems, a similar construction to (4) using a smoothed
distance function to the parabolic boundary of the space-time domain can be used. We refer the
reader to Lyu et al. (2020) for an explicit example.

Using ansatz functions of the above form with exact boundary values has become increasingly
popular as it has been observed to simplify the training process and produce more accurate solu-
tions, see for instance Berg and Nyström (2018); Roth et al. (2021); Lyu et al. (2020); Chen et al.
(2020). The works of Chen et al. (2020); Courte and Zeinhofer (2021) explicitly compare penalized
boundary conditions to exactly enforced ones in numerical studies and found improved accuracy
and a faster training process. This is in accordance with Krishnapriyan et al. (2021) that illustrates
the difficulties in the training process stemming from soft penalties in residual minimisation. It is
also possible to encode Neumann or Robin boundary conditions in a similar way, we refer the reader
to Lyu et al. (2020). However, we mention that the approximation capabilities of such ansatz classes
have not been studied so far.

1.2. Organisation

We state our main results in Section 2, where we begin with the improved mode of convergence in
the presence of exact boundary conditions in Section 2.1. We discuss the failure of H2 estimates
with inexact boundary conditions in Section 2.2 and the implication of stronger penalisation of the
residual in Section 2.3. We generalise our results to parabolic equations in Section 3.

1.3. Notation

On an open subset Ω of Rd with boundary ∂Ω, we denote the Lebesgue spaces with integrability
order p ∈ [1,∞] by Lp(Ω) and Lp(∂Ω) respectively. The Sobolev spaces with order of integrability
p ∈ [1,∞] and smoothness parameter s ∈ R are denoted by W s,p(Ω) and W s,p(∂Ω). If p = 2
we instead write Hs(Ω) and Hs(∂Ω). The Sobolev space with zero boundary values in the trace
sense is denoted by W 1,p

0 (Ω) or H1
0 (Ω) respectively. The reader is referred to Grisvard (2011) for

the precise definitions and more information on Sobolev spaces. Furthermore, for a Banach space
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V , we denote by L2(I, V ) the Bochner space of Bochner measurable, square integrable functions
defined on the time interval I = [0, T ] taking values in V . For the Sobolev space modelled on
L2(I, V ) we write H1(I, V ) and refer the reader to Boyer and Fabrie (2012).

For multivariate, scalar valued functions, we use the symbol ∆ for the Laplace operator, ∇ for
the gradient and D2 for the second derivative, i.e. the Hessian. By dt we denote a time derivative,
usually in the context of a vector-valued Sobolev space.

For the purpose of this work, it suffices to view neural networks as parametric families of func-
tions. More precisely, let Θ ⊆ RN be a parameter set and V a (subset of a) function space. Suppose
there is a map Θ → V denoted by θ 7→ uθ. We then say uθ is the (neural network) function rep-
resented by the parameters θ. Note that the usual neural network architectures fall in this category,
however, this setting also includes general parametric function classes. We stick to the terminology
of neural networks since their recent application is the main motivation of this work.

2. Implications of Exact Boundary Values in Residual Minimisation

In this section we show the theoretical benefits of using neural network type ansatz functions that
satisfy Dirichlet boundary conditions exactly in the residual minimisation method for the Poisson
problem. We see that the exact boundary conditions improve the mode of convergence fromH1/2 to
H2. Although being formulated for the Laplace operator, those results hold for any elliptic operator
which is H2 regular.

2.1. H2 estimates for Residual Minimisation with Exact Boundary Values

We start by considering the case of exact boundary conditions and present two main results, one
that allows to quantify the H2 error using the value of the loss function and the other, an estimate
based on Céa’s Lemma that allows to link the approximation capabilities of the network class to the
error made by residual minimisation.

Setting 1 We consider again (1), in particular, we assume that the problem is H2 regular meaning
that there is a constant Creg > 0, satisfying

‖u‖H2(Ω) ≤ Creg‖∆u‖L2(Ω) for all u ∈ H2(Ω) ∩H1
0 (Ω).

Furthermore, we assume that Θ is a parameter set of a neural network type ansatz class, such that
for every θ ∈ Θ we have uθ ∈ H2(Ω) and (uθ)|∂Ω = g. As our strategy is to minimise the residual
we define the loss function

L : Θ→ R, L(θ) = ‖∆uθ + f‖2L2(Ω).

Remark 2 Setting 1 is for example satisfied when ∂Ω ∈ C1,1, f ∈ L2(Ω). Alternatively, one can
replace the assumption ∂Ω ∈ C1,1 by requiring that the domain Ω is convex. We refer to Grisvard
(2011) for a detailed discussion of the regularity properties of elliptic equations.

The following result is a trivial corollary of the H2 regularity we assumed and a similar result is
due to van der Meer et al. (2020), although not exploiting the benefits of exact boundary conditions.
Albeit being of simple nature, we believe it can be of practical relevance due to its easy and explicit
error control.
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Theorem 3 Assume we are in the situation of Setting 1, then it holds for every θ ∈ Θ that

‖uθ − uf‖H2(Ω) ≤ Creg
√
L(θ).

For convex domains, we may estimate the regularity constant explicitely. It holds

Creg ≤
√

1 + CP ≤

√
1 +

(
|Ω|
ωd

) 1
d

,

where d is the dimension of Ω, ωd denotes the volume of the unit ball in Rd and CP is the Poincaré
constant for functions in H1

0 (Ω).

Proof The difference uθ − uf lies in H2(Ω) ∩H1
0 (Ω) and solves −∆(uf − uθ) = ∆uθ + f . The

H2(Ω) regularity theory then implies the desired estimate. Let us now assume that Ω is convex and
derive the explicit estimate on Creg. We expand the H2(Ω) norm of uf ∈ H2(Ω) ∩H1

0 (Ω)

‖uf‖2H2(Ω) = ‖uf‖2L2(Ω) + ‖∇uf‖2L2(Ω) + ‖D2uf‖2L2(Ω)

Due to the zero boundary values and the convexity of Ω we have

‖D2u‖2L2(Ω) = ‖∆u‖2L2(Ω) = ‖f‖2L2(Ω)

and we refer the reader to Grisvard (2011) for details. The first two terms can be estimated jointly
using the a priori estimates of the Lax-Milgram Theorem, this yields

‖u‖2L2(Ω) + ‖∇u‖2L2(Ω) ≤ C
2
P ‖f‖2H1

0 (Ω)∗ ≤ C
2
P ‖f‖2L2(Ω).

This is due to the fact that C−1
P is the coercivity constant of the Dirichlet Laplacian bilinear form,

see Evans (1998). The explicit estimate of the Poincaré constant CP can be found in Jost (2003).

Remark 4 Some remarks are in order.

(i) The zero boundary conditions are essential. If one instead resorts to a L2(∂Ω) penalty of
the boundary values the best convergence one can hope for is H1/2(Ω). We elaborate this in
Section 2.2.

(ii) The theorem allows to compute an explicit upper bound on the error made by residual min-
imisation, once the training returns a parameter θ via computing the (continuous) loss. In
particular, no access to the solution uf is required. This means that if boundary conditions
are encoded in the ansatz functions, the loss itself is a consistent a posteriori error estimator
for the residual minimisation method.

(iii) The root in the estimate above does not indicate a slow convergence. In fact, the loss itself is
a squared L2(Ω) norm and the root accounts for that.

The next theorem allows to quantify the error made by the residual minimisation method using the
optimization quality and the expressiveness of the ansatz class. It is an application of the non-linear
Céa Lemma as formulated by Müller and Zeinhofer (2021).
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Theorem 5 Assume we are in Setting 1, then for any θ ∈ Θ it holds

‖uf − uθ‖H2(Ω) ≤
√
C2

regδ + C2
reg inf

θ̃∈Θ
‖∆(uθ̃ − uf )‖2

L2(Ω)
≤
√
C2

regδ + C2
reg inf

θ̃∈Θ
‖uθ̃ − uf‖2H2(Ω)

,

(5)
where δ = L(θ)− inf θ̃∈Θ L(θ̃).

Proof We define the energy

E : H2(Ω)→ R, E(u) = ‖∆u+ f‖2L2(Ω).

Note that E is defined on a different domain than the loss function L, which is why we reserve an
own symbol for it. The energy E is a quadratic energy

‖∆u+ f‖2L2(Ω) =

∫
Ω

(∆u)2dx+ 2

∫
Ω
f∆udx+

∫
Ω
f2dx

=
1

2
a(u, u)− F (u) + c,

where the bilinear form a : H2(Ω) ×H2(Ω) → R, the functional F ∈ H2(Ω)∗ and the constant c
are given by

a(u, v) = 2

∫
Ω

∆u∆vdx, F (u) = 2

∫
Ω
f(−∆u)dx, c =

∫
Ω
f2dx.

The unique minimiser of E in the affine subspace H2(Ω) ∩ H1
g (Ω) is precisely the solution uf to

the Poisson problem (1). The bilinear form a is coercive on the subspace H2(Ω) ∩H1
0 (Ω), which

follows from elliptic regularity theory, see for instance Grisvard (2011). This allows to exploit a
Céa Lemma for non-linear ansatz spaces, as described in Proposition 3.1 by Müller and Zeinhofer
(2021). To transfer this to the affine space H2(Ω) ∩ H1

g (Ω) we choose ug ∈ H2(Ω) such that
−∆ug = 0 and (ug)|∂Ω = g. For an arbitrary uθ we then expand

‖uθ − uf‖H2(Ω) = ‖(uθ − ug)− (uf − ug)‖H2(Ω).

Now note that uf − ug solves −∆(uf − ug) = f with zero boundary values, hence uf − ug is the
unique minimiser of E over the subspace H2(Ω)∩H1

0 (Ω) and we can apply Céa’s Lemma with the
ansatz set {uθ − ug | θ ∈ Θ}

‖uθ − uf‖H2(Ω) ≤

√
2δ

α
+

1

α
inf
θ̃∈Θ
‖uθ̃ − uf‖2a,

where ‖·‖a denotes the norm induced by a. Using that the coercivity constant α of a is 2/C2
reg and

the norm ‖·‖a = 2‖∆·‖L2(Ω) we conclude.

Remark 6 (Errors with Respect to the Complexity of the Ansatz Class) Note that our results
so far yield two possibilities to relate the complexity of the ansatz class to the smallest achievable
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error. First, as a consequence of the regularity estimate of Theorem 3 we can control the smallest
achievable value of the loss function

inf
θ∈Θ
L(θ) ≤ c · inf

θ∈Θ
‖uθ − uf‖2H2(Ω)

as already discussed in (3). On the other hand, by the application of Theorem 5 we can estimate the
smallest achievable error in the H2(Ω) norm (setting δ = 0, hence assuming perfect training)

‖uf − uθ‖H2(Ω) ≤ Creg inf
θ̃∈Θ
‖uθ̃ − uf‖H2(Ω).

We stress however, that the complexity of the ansatz class is only implicitly present in the above
estimates and that explicit estimates require a quantitative universal approximation result inH2(Ω)
norm with zero boundary values. To the best of our knowledge, no quantitative estimates on the
H2 approximation are available in the literature and there are no estimates for neural network
approximation with zero boundary values at all.

Remark 7 (General Elliptic Equations) The discussion of this chapter can be extended to more
general elliptic equations. For coefficients A ∈ C0,1(Ω,Rd×d), a right-hand side f ∈ L2(Ω) and
boundary values g ∈ H3/2(∂Ω) consider the equation

−div (A∇u) = f in Ω,

u = g on ∂Ω.

If we assume that ∂Ω ∈ C1,1 (or that Ω is convex) and the coefficients are uniformly elliptic, i.e., for
a constant cA > 0 satisfy A(x)ξ · ξ ≥ cA|ξ|2 uniformly in x ∈ Ω and ξ ∈ Rd, the problem admits a
unique solution uf ∈ H2(Ω) and we can estimate

‖uf‖H2(Ω) ≤ creg

(
‖f‖L2(Ω) + ‖g‖H3/2(∂Ω)

)
.

Arguing as in the proof of Theorem 3 we obtain

‖uθ − uf‖H2(Ω) ≤ creg
√
L(θ).

Similarly, Theorem 5 can be transferred to this setting.

2.2. Failure without Exact Boundary Values

In this section we show that not enforcing exact boundary values in the neural network ansatz
functions leads to considerably weaker error estimates. Throughout this subsection, we work under
the following assumptions.

Setting 8 We consider again (1). We assume that Θ is a parameter set of a neural network type
ansatz class, such that for every θ ∈ Θ we have uθ ∈ H2(Ω), but make no assumptions on its bound-
ary values. As our strategy is to minimise the residual we define the loss function with boundary
penalty

Lτ : Θ→ R, Lτ (θ) = ‖∆uθ + f‖2L2(Ω) + τ‖uθ − g‖2L2(∂Ω),

where τ ∈ (0,∞) is a positive penalization parameter.
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Without exact boundary values, the penalization of the deviations of the boundary values is
required in order to enforce them approximately. Note that if uθ has exact boundary values, it
holds that Lτ (θ) = L(θ). With the penalization introduced above, we obtain a similar result to
Theorem 3 but only with respect to the weaker H1/2-norm, which is to the estimate by Shin et al.
(2020) is sharp. However, we sharpen this result by showing that 1/2 is the largest exponent for
which such an estimate can hold in general.

Theorem 9 Assume that we are in Setting 8 and that the domain Ω ⊆ Rd has a smooth boundary
∂Ω ∈ C∞. Then for s ∈ R there is a constant c > 0 such that

‖uθ − uf‖Hs(Ω) ≤ c
√
Lτ (θ) for all θ ∈ Θ (6)

and all parametric classes and data f ∈ L2(Ω), g ∈ H3/2(∂Ω) if and only if s ≤ 1/2.

Proof First, we show that the estimate holds for s ≤ 1/2, where it suffices to show it for s = 1/2.
For this, we use the estimate

‖u‖Hs(Ω) ≤ c
(
‖−∆u‖Hs−2(Ω) + ‖u‖Hs−1/2(∂Ω)

)
, (7)

for all u ∈ C∞(Ω) and s ∈ R, see Theorem 2.1 in Schechter (1963) or Lemma 6.2 in Shin et al.
(2020). Setting s = 1/2 and noting that it extends to functions u ∈ H2(Ω) yields

‖u‖H1/2(Ω) ≤ c
(
‖∆u‖H−3/2(Ω) + ‖u‖L2(∂Ω)

)
≤ c̃

(
‖∆u‖L2(Ω) + ‖u‖L2(∂Ω)

)
.

Setting u := uθ − uf yields

‖uθ − uf‖H1/2(Ω) ≤ (1 + τ−1/2)c̃
√
Lτ (θ).

To show that the estimate (6) can not in general be established for any stronger norms, we
assume that it holds for some s ∈ R. As in the proof of Theorem 5 we define the energy, this time
penalising boundary values

Eτ : H2(Ω)→ R, Eτ (u) := ‖∆u+ f‖2L2(Ω) + τ‖u− g‖2L2(∂Ω).

If the estimate (6) holds for general parametric classes, this yields

‖v − uf‖2Hs(Ω) ≤ c · Eτ (v) for all v ∈ H2(Ω), f ∈ L2(Ω), g ∈ H3/2(∂Ω).

Choosing f = 0 and g = 0 yields

‖v‖2Hs(Ω) ≤ c · Eτ (v) = c ·
(
‖∆v‖2L2(Ω) + τ‖v‖2L2(∂Ω)

)
for all v ∈ H2(Ω).

For h ∈ H3/2(∂Ω) let uh ∈ H2(Ω) denote the unique harmonic extension, i.e., the solution of

−∆uh = 0 in Ω

uh = h on ∂Ω.
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Now we have

‖h‖2
Hs−1/2(∂Ω)

≤ c‖uh‖2Hs(Ω) ≤ c̃
(
‖∆uh‖2L2(Ω) + τ‖uh‖2L2(∂Ω)

)
= c̃τ · ‖h‖2L2(∂Ω) (8)

for all h ∈ H3/2(∂Ω). In order to see that this implies s ≤ 1/2 we assume the contraty and set
ε := s − 1/2 > 0. Then, the embedding H3/2(∂Ω) ↪→ Hε(∂Ω) is dense and hence (8) extends to
h ∈ Hε(∂Ω). This yields that all norms ‖·‖Hδ(∂Ω) for δ ∈ (0, ε) are equivalent to ‖·‖L2(∂Ω), which
implies that all spaces Hδ(∂Ω) agree which constitutes a contradiction.

Remark 10 (Stronger estimates through stronger penalty) We have seen that theL2(∂Ω) penal-
isation can not lead to estimates in a stronger Sobolev norm than H1/2(Ω). However, inspecting
inequality (7) one could – at least in theory – penalise the boundary values in the H3/2(∂Ω) norm
and would then obtain H2(Ω) estimates. As the H3/2(∂Ω) norm is difficult to approximate in
practice, this is no feasible numerical approach.

Remark 11 (Stronger estimates through interpolation) It is possible to bound the Hs error for
s ≥ 1/2 of residual minimisation with L2 boundary penalty for the expense of worse rates and
under the cost of an additional factor for which it is not clear whether it is bounded. Similar to
Biswas et al. (2020) one can use an interpolation inequality for s ∈ [1/2, 2] to obtain

‖u‖Hs(Ω) ≤ ‖u‖
2(2−s)/3
H1/2(Ω)

· ‖u‖(2s−1)/3
H2(Ω)

for all u ∈ H2(Ω).

Together with the a posteriori estimate on the H1/2 norm, this yields

‖uf − uθ‖Hs(Ω) ≤ ‖uf − uθ‖
2(2−s)/3
H1/2(Ω)

· ‖uf − uθ‖
(2s−1)/3
H2(Ω)

- ‖uf − uθ‖
(2s−1)/3
H2(Ω)

· L(θ)(2−s)/3

≤
(
‖uf‖H2(Ω) + ‖uθ‖H2(Ω)

)(2s−1)/3 · L(θ)(2−s)/3.

Hence, if it is possible to control the H2 norm of the neural network functions, one obtains an a
posteriori estimate on the Hs error. Note however, that the H2 norm of the neural networks func-
tions is not controlled through the loss function L and hence, this estimates requires an additional
explicit or implicit control on theH2 norm in order to be informative. Note, however, that the power
of the a posteriori estimate decreases towards zero for s→ 2 and the estimate collapses to a trivial
bound for s = 2.

2.3. Higher Order Sobolev Norms as a Residual Measurement

We discuss the potential benefit of using (higher order) Sobolev norms to measure the residual,
as was already proposed by Son et al. (2021). We are again supposing the exact enforcement of
boundary conditions. Our precise setting is the following.

Setting 12 Let p ∈ (1,∞) and k ≥ 0 be fixed. Assume that Ω ⊆ Rd is a bounded, open domain
with Ck+1,1 boundary and let f ∈ W k,p(Ω) and g ∈ W 2+k−1/p,p(∂Ω). Denote by uf the solution
to (1). Furthermore, let Θ be a parameter set of a neural network class, such that for every θ ∈ Θ
we have uθ ∈W k+2,p(Ω) and u|∂Ω = g. We define the loss function

L : Θ→ R, L(θ) = ‖∆uθ + f‖p
Wk,p(Ω)

. (9)
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In total analogy to Theorem 3 we obtain the following result.

Theorem 13 Assume we are in the situation of Setting 12, then it holds for every θ ∈ Θ that

‖uθ − uf‖Wk+2,p(Ω) ≤ Creg(p, k) p
√
L(θ).

Proof The essential ingredient is the Lp regularity theory that holds under the assumptions made in
Setting 12, see for instance chapter 2.5 in Grisvard (2011). The relevant result is that

−∆: W k+2,p(Ω) ∩W 1,p
0 (Ω)→W k,p(Ω)

is a linear homeomorphism, where Creg(p, k) denotes the operator norm of its inverse.

Remark 14 The above result might be interesting if approximation of higher derivatives is desired.
Furthermore, the empirical findings of Son et al. (2021) suggest that measuring the residual in a
Sobolev norm might lead to fewer iterations in a gradient based optimization routine.

3. Estimates for Parabolic Equations

The same observation made for the Poisson equation can be exploited for linear parabolic equations
when both initial and boundary values are satisfied exactly by the ansatz class. Here, the key is
maximal parabolic L2 regularity theory. We begin by describing our setting.

Setting 15 We consider again a domain Ω ⊆ Rd that is H2 regular for the Laplacian and a finite
time interval I = [0, T ]. For f ∈ L2(I, L2(Ω)), g ∈ H3/2(∂Ω) and u0 ∈ H1

0 (Ω) we consider the
parabolic problem

dtu−∆u = f in I × Ω

u(t)|∂Ω = g for all t ∈ I
u(0) = u0.

(10)

Let Θ be a parameter set of a neural network class such that for every θ ∈ Θ the function uθ is a
member of the space

X = H1(I, L2(Ω)) ∩ L2(I,H2(Ω) ∩H1
g (Ω)), ‖u‖X = ‖dtu‖L2(I,L2(Ω)) + ‖u‖L2(I,H2(Ω))

with uθ(0) = u0. This means that both initial and boundary conditions are satisfied exactly. For an
introduction to vector-valued Sobolev spaces we refer the reader to Boyer and Fabrie (2012). Then
we define the loss function

L(θ) = ‖dtuθ −∆uθ − f‖2L2(I,L2(Ω))

The following theorem is analogue to the case of the Laplacian and relies on a parabolic regularity
result.

Theorem 16 Assume we are in Setting 15. Then it holds for all θ ∈ Θ that

‖uθ − uf‖X ≤ C
√
L(θ)

10
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Proof We denote by H1
0 (I, L2(Ω)) the vector-valued Sobolev space with vanishing initial values.

Maximal parabolic L2(Ω) regularity theory tells us that

dt −∆: H1
0 (I, L2(Ω)) ∩ L2(I,H2(Ω) ∩H1

0 (Ω)) −→ L2(I, L2(Ω))

is a linear homeomorphism and this implies the assertion, see for instance Arendt et al. (2017) for
more information on maximal parabolic regularity. The constant C is then the operatornorm of
(dt −∆)−1.

Remark 17 Of course this result is not limited to the heat equation. Indeed one can replace −∆
by a self-adjoint, coercive operator that satisfies H2(Ω) regularity, we refer the reader again to
Arendt et al. (2017) for the corresponding regularity theory. For information on the dependency of
the constant C on data, we refer to Amann (1995), especially Theorem 4.10.8.

Remark 18 Mishra and Molinaro (2022) report error estimates for parabolic equations not en-
forcing initial and boundary conditions in the ansatz architecture. We stress that even though the
solutions there are assumed to be classical, smooth solutions the error is only estimated in the
L2(I ×Ω) norm which is weaker than the estimates presented here. This is again due to advantage
of exact boundary and initial conditions.

Acknowledgments

The authors want to thank Luca Courte, Patrick Dondl and Stephan Wojtowytsch for their valu-
able comments. JM acknowledges support by the Evangelisches Studienwerk e.V. (Villigst), the
International Max Planck Research School for Mathematics in the Sciences (IMPRS MiS) and the
European Research Council (ERC) under the EuropeanUnion’s Horizon 2020 research and innova-
tion programme (grant number 757983). MZ acknowledges support from BMBF within the e:Med
program in the SyMBoD consortium (grant number 01ZX1910C) and the Research Council of Nor-
way (grant number 303362).

References

Herbert Amann. Linear and Quasilinear Parabolic Problems: Volume I: Abstract Linear Theory,
volume 1. Springer Science & Business Media, 1995.

Wolfgang Arendt, Dominik Dier, and Stephan Fackler. JL Lions’ Problem on Maximal Regularity.
Archiv der Mathematik, 109(1):59–72, 2017.

Jens Berg and Kaj Nyström. A unified deep artificial Neural Network Approach to Partial Differen-
tial Equations in complex Geometries. Neurocomputing, 317:28–41, 2018.

Animikh Biswas, Jing Tian, and Suleyman Ulusoy. Error Estimates for Deep Learning Methods in
Fluid Dynamics. arXiv preprint arXiv:2008.02844, 2020.

Franck Boyer and Pierre Fabrie. Mathematical Tools for the Study of the Incompressible Navier-
Stokes Equations and related Models, volume 183. Springer Science & Business Media, 2012.

11



NOTES ON EXACT BOUNDARY VALUES IN RESIDUAL MINIMISATION

Jingrun Chen, Rui Du, and Keke Wu. A Comparison Study of Deep Galerkin Method and Deep
Ritz Method for Elliptic Problems with Different Boundary Conditions. arXiv e-prints, pages
arXiv–2005, 2020.

Luca Courte and Marius Zeinhofer. Robin pre-training for the deep ritz method. arXiv preprint
arXiv:2106.06219, 2021.

Eric C Cyr, Mamikon A Gulian, Ravi G Patel, Mauro Perego, and Nathaniel A Trask. Robust Train-
ing and Initialization of Deep Neural Networks: An adaptive Basis Viewpoint. In Mathematical
and Scientific Machine Learning, pages 512–536. PMLR, 2020.

MWMG Dissanayake and Nhan Phan-Thien. Neural-Network-based Approximations for solving
Partial Differential Equations. Communications in Numerical Methods in Engineering, 10(3):
195–201, 1994.

Weinan E and Bing Yu. The Deep Ritz method: a Deep Learning-based numerical Algorithm for
solving Variational Problems. Communications in Mathematics and Statistics, 6(1):1–12, 2018.

Lawrence C Evans. Partial Differential Equations, volume 19. Rhode Island, USA, 1998.

Pierre Grisvard. Elliptic Problems in nonsmooth Domains. SIAM, 2011.

Jürgen Jost. Partial Differential Equations. Springer, 2003.

Aditi Krishnapriyan, Amir Gholami, Shandian Zhe, Robert Kirby, and Michael W Mahoney. Char-
acterizing possible failure modes in physics-informed neural networks. Advances in Neural In-
formation Processing Systems, 34, 2021.

Isaac E Lagaris, Aristidis Likas, and Dimitrios I Fotiadis. Artificial Neural Networks for solving
Ordinary and Partial Differential Equations. IEEE transactions on neural networks, 9(5):987–
1000, 1998.

Liyao Lyu, Keke Wu, Rui Du, and Jingrun Chen. Enforcing exact Boundary and Initial Conditions
in the deep mixed Residual Method. arXiv preprint arXiv:2008.01491, 2020.

Siddhartha Mishra and Roberto Molinaro. Estimates on the generalization error of physics-informed
neural networks for approximating pdes. IMA Journal of Numerical Analysis, 2022.

Johannes Müller and Marius Zeinhofer. Error Estimates for the Variational Training of Neural
Networks with Boundary Penalty. arXiv preprint arXiv:2103.01007, 2021.

Maziar Raissi and George Em Karniadakis. Hidden physics models: Machine learning of nonlinear
partial differential equations. Journal of Computational Physics, 357:125–141, 2018.

Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neural networks: A
deep learning framework for solving forward and inverse problems involving nonlinear partial
differential equations. Journal of Computational physics, 378:686–707, 2019.
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